Mecânica Quântica I da PG - 2019.1 - IF-UFF - Lista de exercícios n. 6 (Dated: June 12, 2019)

Ex. 1 (Spin 1.) Considere uma partícula de spin 1. Calcule os elementos de matriz de S_x e do operador de rotação por um ângulo α em torno do eixo x.

Ex. 2 (J_y de spin 1.) Considere uma partícula preparada em um auto-estado de momento angular $|j,m\rangle$ que é auto-estado dos operadores J^2 e J_z .

- a) Para um dado j e m, calcule $\langle J_y \rangle$ e sua variância ΔJ_y .
- b) Considere agora uma partícula de spin j=1. Encontre o autovetor de J_y com autovalor $+\hbar$, escrevendo-o na base $\{|j,m\rangle\}$. Use isto para calcular a probabilidade de obtermos o resultado $+\hbar$ numa medida de J_y no estado $|j=1,m=1\rangle$.

Ex. 3 (Momento angular orbital.) Seja \vec{J} um operador de momento angular. Usando o fato que J_x, J_y, J_z e J_{\pm} satisfazem as relações de comutação que estudamos, prove que

$$J^2 = J_z^2 + J_+ J_- - \hbar J_z. \tag{1}$$

b) Usando a) (ou outra ideia) encontre o valor do coeficiente
 c_- da equação

$$J_{-}\psi_{jm} = c_{-}\psi_{j,m-1}. (2)$$

Ex. 4 (Harmônicos esféricos) Considere um auto-estado de momento angular orbital $|l=2,m=0\rangle$. Suponha que este estado seja rodado ao redor do eixo y por um ângulo β . Encontre as probabilidades de encontrarmos o estado resultante com números quânticos $m=0,\pm 1$ e ± 2 . Pode ser útil consultar uma tabela com os harmônicos esféricos, disponível na internet ou no Apêndice A do Sakurai.

Ex. 5 (Usando a tabela de coeficientes de Clebsch-Gordan.)

Sabemos que os auto-estados $|j,m\rangle$ de momento angular total j e componente z do momento angular total m satisfazem a equação de autovalores/autovetores:

$$J^{2}|j,m\rangle = j(j+1)\hbar^{2}|j,m\rangle \tag{3}$$

$$J_z |j, m\rangle = m\hbar |j, m\rangle \tag{4}$$

Considere um sistema composto de duas partículas, a primeira de spin 3/2 e a segunda com spin 1/2. Para esta questão vocês vão precisar de uma tabela de coeficientes de Clebsch-Gordan. Usando-a quando necessário, responda às perguntas:

- a) Quais os valores possíveis de j para esse sistema composto? Qual a degenerescência de cada j? Qual a degenerescência de cada m?
- b) Escreva a expansão para o estado global $|j=2,m=-1\rangle$ em termos dos auto-estados de momento angular e seu componente z de cada subsistema: $\{|j_1,m_1\rangle\otimes|j_2,m_2\rangle\}$.
- c) Suponha agora que preparamos as duas partículas no estado global $|j=2,m=-1\rangle$. Em seguida, medimos o componente z do momento angular de cada partícula $(m_1 \ e \ m_2)$. Que valores para a dupla (m_1,m_2) podemos encontrar, e com que probabilidade aparecerá cada combinação ?
- **Ex.** 6 (J 1.) Sejam \vec{A} e \vec{B} operadores vetoriais. Isso significa que seus componentes satisfazem certas relações de comutação com os componentes do momento angular \vec{J} . Use essas relações para mostrar que $\vec{A} \cdot \vec{B}$ é invariante por rotações, ou seja, um escalar.

I. OUTROS PROBLEMAS RECOMENDADOS

Sakurai 3.4, 3.12, 3.20, 3.22, 3.24.