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Reinventing the wheel: Hodographic solutions to the Kepler problems a…

David Derbes
The University of Chicago Laboratory Schools, 1362 East 59th Street, Chicago, Illinois 60637

~Received 19 July 1999; accepted 7 September 2000!

There are two Kepler problems: given the inverse-square law, find the trajectories; or, given
Kepler’s laws, find the inverse-square law. Traditionally these problems are solved in the classroom
via calculus, but the amount of calculus needed may be prohibitively high for a first-year course.
Alternative solutions to the Kepler problems have been discovered, forgotten, and rediscovered for
centuries. Many of these employ Hamilton’s hodograph, a graphical representation of an object’s
velocity. This article demonstrates hodographic solutions to the Kepler problems, including an
algorithm for the construction of parabolic trajectories. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

One of the triumphs of classical mechanics is the demon-
stration that the observed elliptical orbits of the planets fol-
low directly from Newton’s laws of motion and the inverse-
square law of gravity. Textbook treatments of ‘‘the Kepler
problem’’ often begin with the law of gravity and the con-
servation of angular momentum, develop a differential equa-
tion for u51/r as a function of angleu, and solve it.1 The
resulting solution is revealed to be the standard polar equa-
tion for the family of conic sections. Less commonly the
procedure is reversed: Starting from the observed elliptical
path of a planet and Kepler’s second law~equal areas in
equal times!, one may derive the inverse square law by dif-
ferentiation of the solution.2

Determining the~unknown! force law from Kepler’s em-
pirical laws was the first task facing the natural philosophers
of Newton’s time, although today the emphasis is reversed.
Historians of science usually refer to the determination of the
force from Kepler’s laws as the ‘‘direct’’ Kepler problem.
The derivation of the elliptical planetary orbits from New-
ton’s law of gravitation is often called the ‘‘inverse’’ Kepler
problem.3

The standard treatments of both Kepler problems—the
force problem and the trajectory problem—require a com-
fortable facility with the differential calculus of vector-
valued functions, and at least a nodding familiarity with the
polar equation of the conic sections. An instructor teaching
first-year physics, even if calculus-based, often treats only
the special and far easier case of circular orbits, because the
necessary calculus is a little beyond the reach of almost all of
the students. What is wanted is an accessible approach to the
solution of the Kepler problems. Such was found nearly two
centuries ago, the ‘‘hodograph’’ of Sir William Rowan
Hamilton and August F. Mo¨bius.4 This approach has been
forgotten and independently rediscovered several times, as
often recounted in this journal.5 Perhaps the best known of
these rediscoveries is Feynman’s ‘‘Lost Lecture,’’ beauti-
fully recreated by D. and J. Goodstein.6 Feynman credits
Fano’s treatment of Rutherford scattering7 for providing the
basis of his Kepler solution.8

Newton’s original solution of the direct problem,9 while
not exactly calculus-based, does not employ the hodograph
and will not be discussed here. Newton’s discussion of the
inverse problem, which does require calculus, presents
greater problems. Twenty years ago, Weinstock10 reopened
an old controversy, begun by Johann Bernoulli,11 arguing

that Newton’s sketch of a solution to the inverse problem
was incorrect. While most historians and mathematicians
~notably Arnol’d12! give the great Newton the benefit of the
doubt, at least one prominent historian of science13 agrees
that Bernoulli, not Newton, should have won Wren’s famous
prize of a forty shilling book, offered for the solution of the
inverse Kepler problem.Latera non eligo: The controversy is
too fierce and the mysteries too deep for this author to
choose sides here. Comprehensive discussions of Newton’s
work on the Kepler problems have been given by Aiton,14

Brackenridge,15 Chandrasekhar,16 De Gandt,17 Densmore,18

and Whiteside,19 to name but a few.
This article first states a few theorems for the ellipse and

the parabola. Next, it introduces Hamilton’s hodograph, with
some history. The hodograph is used to construct the familiar
trajectory of projectile motion. Two key theorems for the
Kepler problems are sketched. Finally, the hodographic so-
lutions to both Kepler problems are given. For the inverse
problem, the hodograph provides both the familiar elliptic
and a new parabolic trajectory.

II. SOME GEOMETRY OF THE ELLIPSE AND THE
PARABOLA

The difficulty with teaching geometric solutions is that
students of the current generation do not know much about
the conic sections. Fortunately the number of theorems
needed is small. Classical geometric proofs of most of these
theorems may be found in theConicsof Apollonius of Perga,
written twenty-two centuries ago.20 Exceptions are those
proofs dealing with the focus of a parabola and the directrix,
neither of which appears in theConics. Analytic proofs are
usually not difficult to construct. To keep this article to a
manageable length, the conic theorems are simply stated.

A. The ellipse

1. The perpendiculars from the tangent to the foci

Given a tangent, draw two lines of lengthr 1 ,r 2 from the
foci perpendicular to the tangent. Thenr 1r 25b2, whereb is
the semiminor axis of the ellipse.~This theorem is not in the
Conics, but it follows as a corollary to III. 46.! In Fig. 1, ZM
and YS are perpendicular to DE. Then ZM•YS5b2.

2. The optical theorem for ellipses

Given an ellipse and a tangent to the ellipse, lines drawn
from the foci to the tangent make congruent angles with the
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tangent ~Fig. 2!. Draw lines from M and S to T; then
/DTM5/ETS. The theorem is famous but few know
Apollonius’ ingenious and very beautiful proof~Conics III
48!.

3. The director circle and the auxiliary circle

Consider an ellipse with center C and foci M and S as
shown~Fig. 3!, with semimajor axisa and semiminor axisb.
Let ZT be a tangent to the ellipse, and as before, draw ZM
and YS perpendicular to ZT. Let U be the reflection of M
through Z, and thus MZ5UZ. Then the locus of U is a circle
of radius 2a, centered on S, called thedirector circle.21

~There is a second director circle, congruent to the first, cen-
tered on the other focus, M.!

The director circle is the main idea in Feynman’s solution
to the inverse problem. Start with a circle centered on S.
Choose a second point M inside the circle, and draw lines
from both S and M to a common point U on the circle. Draw
the perpendicular bisector ZY of MU. Call the intersection of
ZY with SU a point T. The locus of T is an ellipse. The point
M will become one focus of the constructed ellipse; the cir-
cle’s center S will be the other focus.

Now consider the locus of Z. A line drawn from the center
C to Z divides the triangleDMUS proportionally, as MC
5 1

2 MS and MZ5 1
2 MU. Therefore CZ is parallel to US and

its length is half the fixed length of US: the locus of Z is also
a circle, of radiusa, centered on C. This circle, which cir-
cumscribes the ellipse, is called theauxiliary circle.22 The
proof that the locus of Z~and Y! is a circle is given in
Conics, III 50. The auxiliary circle is used by Kelvin and
Tait to prove Hamilton’s theorem~see below!.

B. The parabola

1. The optical theorem for parabolas

Everyone knows that a ray of light striking a parabolic
mirror parallel to the axis reflects to the focus~Fig. 4!. Given
a parabola AT with vertex A, focus M, and axis MA. let a
ray LT be drawn parallel to the axis. If LT is reflected about
the normal at T, it will strike the focus at M. That is,
/DTM5/ETL.23

2. Newton’s theorem on parabola tangents

We will need a theorem proved by Newton himself: The
foot of a perpendicular line drawn from the focus to a tan-
gent lies on the tangent at the vertex.~Principia, Corollary
III to Lemma XIV, following Proposition XII! ~Fig. 5!.

Draw the line from focus S perpendicular to the tangent
TP. Let Z be the foot of this perpendicular line on TP, and
denote the vertex by A. Then ZA is the tangent at the vertex,
and Z lies on this tangent.

3. The ‘‘director circle’’ and the ‘‘auxiliary circle’’ for
the parabola

Recall the definition of the director circle for the ellipse,
and follow the same prescription for the parabola~Fig. 6!.
Let SZ be the perpendicular line drawn from S to the tangent
PT. Then U, a point that should be on the director circle, is
the reflection of S through Z. For the parabola, though, the
locus of U is easily seen to be a straight line. This follows
from Newton’s theorem: The locus of Z is the tangent at the
vertex. Draw a line from U parallel to the axis AS to inter-
sect the vertex tangent AZ at Y. Since UZ5ZS, and
/UZY5/AZS, the distance UY will always equal the dis-

Fig. 1. ZM•YS5b2.

Fig. 2. Ellipse optical theorem:/DTM5/ETS.

Fig. 3. Director circle for the ellipse.

Fig. 4. Parabola optical theorem:/DTM5/ETL.
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tance AS, which is fixed. Then the locus of U is a vertical
line, just as far from the vertex as is the focus; it’s the direc-
trix! Recall that a parabola may be thought of as an ellipse
with one focus at infinity; so the radius of the director circle
becomes infinite, i.e., the director circle becomes a straight
line. In the same way, the auxiliary circle, the locus of Z,
becomes the tangent at the vertex.24

III. HAMILTON’S HODOGRAPH

Hamilton evidently became interested in planetary physics
following the discovery of the planet Neptune in 1846.25

While preparing a series of lectures on this subject, he dis-
covered a new way of thinking about orbits, with a graphical
representation of the velocity. Hamilton called the graph of
the tip of the velocity vector as a function of time the
hodograph, from the Greek ‘‘to draw’’ ~graphein! and
‘‘path’’ ~hodos!. The arc of the hodograph between two
times infinitesimally close to each other is proportional to,
and in the same direction as, the acceleration. That is, the
‘‘velocity’’ of the hodograph is the acceleration of the ob-
ject.

Hamilton communicated his results to the main British
participants~G. B. Airy, J. C. Adams, W. Whewell! in the
search for the planet Neptune, as well as to William Thom-
son ~later known as Lord Kelvin!. In general the hodograph
was not received enthusiastically, except by the ‘‘Celtic
school’’ of mathematical physicists: Thomson, his close col-
laborator Peter Guthrie Tait, and James Clerk Maxwell, as
well as Hamilton himself, all of whom would use Hamilton’s
device in their textbooks. In Hamilton’s case the hodograph
crops up in various works on quaternions. As it happens, one
of the only American texts to describe the hodograph at all
was Josiah Williard Gibbs’s on vector analysis,26 who per-
haps wished to show that his rival methods were easily equal
to the job of describing the hodograph, linked so closely to
the father of quaternions. The hodograph does not make any
notable appearance in an American textbook until its redis-
coveries by Fano27 and Feynman.28 It may be that the
hodograph was buried along with quaternions.

Given the hodograph and its origin, integration can deter-
mine the position graph. However, the position can also be
found geometrically, with a construction. There are two
separate problems arising in the construction. First, given a

velocity, at what point in the plane is it to be the tangent? We
do not know where to place it, even if we know its orienta-
tion and its size. Second we will be constructing a position
graph atop a velocity graph; somehow we must relate the
scales of position and velocity. Rotating the hodograph
through 90° counterclockwise solves both problems. We
choose the initial position, so that is where we draw the first
tangent. We know its direction: perpendicular to the first ray
of the hodograph. The next and successive positions will be
determined, as will be shown, by the relative scale between
the position and velocity graphs. Angular momentum pro-
vides an easy method for setting this scale. By rotating the
velocity, we will obtain relationships involving products of
the ratiosvy :vx andx:y, which lead naturally to constraints
involving the angular momentum. These constraints will pro-
vide the scale.

It is only right that angular momentum should provide the
key to the hodograph construction, as it was Kepler himself
who first understood the importance of angular momentum,
and who provided its first expression in his second law.

Let’s see how this works with a simple example. Throw an
object horizontally. Its horizontal velocity is constant. Its
vertical velocity begins with a value of zero and increases at
a constant rate. This projectile’s hodograph is a vertical line.
To construct its trajectory from its hodograph, begin by ro-
tating the hodograph to a horizontal line, denoted AJ in Fig.
7. The original position of the projectile is point A, and MA
is the original velocity; MB is the velocity after an interval
Dt; MC is the velocity after an interval of 2Dt,... . At each
velocity’s tip A, B, C,... draw perpendiculars to the velocities
MA, MB, MC,... . These perpendiculars show the actual di-
rections of the velocities~and hence the tangents!. For each
velocity’s tip, e.g., ME’s, drop a perpendicular line from the
hodograph at twice the distance of that tip from A~for E, the
corresponding point is I!. The intersection of this line with
the line drawn perpendicular to the corresponding velocity
~here, point T! lies on the trajectory.

To show the constructed curve is a parabola, draw a line
ZY parallel to the hodograph AG, where ZA5AM ~Fig. 8!.
Draw a line from G perpendicular to AG, intersecting ZY at
V, and a line from D to V. Then/MDA5/VDG and
MD5DV. By construction, DS is perpendicular to MD and
thus to DV, so point S lies equidistant from both the line ZY,
now revealed to be a directrix, and the hodograph origin, M,
the focus.

Identify this parabola as the projectile’s actual trajectory
with the help of angular momentum~Fig. 9!. The line DW is
to be tangent at some point W with coordinates (bx,by) on
the position graph, whereb is some scale factor to be deter-
mined. Point W is the intersection of a perpendicular line

Fig. 5. Newton’s theorem: ZA is the tangent at the vertex.

Fig. 6. ‘‘Director circle’’ for the parabola.

Fig. 7. Constructing a projectile’s trajectory from its hodograph.
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dropped from some point, K on the hodograph. If the pa-
rabola constructed is the actual trajectory, we must find a
physical justification for the claim AK52AD, or what is the
same thing,bx52vy .

The original horizontal velocityvx equals the original ve-
locity, v0 , which is just MA. Later the velocity MD has
components (v0 ,vy)5(MA,AD). By similar triangles,

vy :v05by:~bx2vy!

or

b~xvy2yv0!5vy
2. ~3.1!

The quantity on the left is justb(L/m), whereL is the size
of the angular momentum, andm the mass of the projectile.
By conservation of energy,vy

252gy, so we can say

bL52mgy. ~3.2!

But udL /dtu5dL/dt5urÃFu5mgx. Differentiating the
above equation,

bmgx52mgvy . ~3.3!

Consequentlybx52vy so AK52AD, and the physical path
is the same as the constructed parabola. For completeness,
note x5v0t, and vy5gt, so b52g/v0 . Below, a related
procedure will produce conic sections for the inverse Kepler
problem.

To solve the Kepler problems with the hodograph, we
need only two theorems, due to Hamilton:

~i! If a mass moves under the action of an inverse square
law force toward a fixed point, then the hodograph is
a circle whose center is the fixed point.

~ii ! If Kepler’s second law holds, and if the trajectory of a
mass is a conic section, then the hodograph is a circle.
~Kelvin and Tait call this ‘‘Hamilton’s Theorem.’’29!

Goldstein has given a very quick proof of~i! based on the
constancy of the Runge–Lenz vector.30 Kelvin and Tait, in
their influential mechanics textA Treatise on Natural Phi-
losophy, provided an elegant analytic proof,31 reprinted in
Hankin’s valuable biography of Hamilton.32 Nearly identical
geometric proofs are given by Hamilton,33 Kelvin and Tait,34

Maxwell,35 Fano,36 and Feynman,37 as follows. Let the force
be attractive~but this is not necessary!. Then an inverse
square law means (r̂ is the unit vector from the force center
to the mass!

a52C/r 2r̂5Dv/Dt5~Dv/Du!~Du/Dt !. ~3.4!

It is easy to show geometrically that if the net force on an
object is directed radially, then Kepler’s second law follows
and angular momentum is conserved.38 Assuming this,

mr2Du/Dt5L, a constant, orDu/Dt5L/mr2. ~3.5!

Putting these together gives

~Dv/Du!~L/mr2!52C/r 2r̂

or

Dv52K r̂Du. ~3.6!

The size of the change in velocity is proportional to the
change in angle, and its direction is determined by the radius
vector. If we imagine dividing a trajectory into sectors of
equal anglesDu, then the sum of all theDv’s will make a
regular polygon, because the successive changes in the ve-
locity vectors are all inclined to each other at the same angle,
Du, and all theDv’s will be the same size.KDu. In the limit
asDu→0, the regular polygon becomes a circle of radiusK.
~For the Kepler problem,C5GM, soK5GMm/L, a result
first given by Hamilton.39! The center of the circle is just the
point from which r̂ is drawn. To see this, recall that the
‘‘velocity’’ of the hodograph, tangent to the circle, is really
the acceleration,a. If the hodograph is rotated 90°, it remains
a circle, but now all the hodograph rays are perpendicular to
the actual directions of the velocities. That means that the
direction of the actual accelerations will be perpendicular to
the tangents of the rotated hodograph, i.e., they will be ra-
dial. We know that the central force provides radial accelera-
tion. That is, for the Kepler problem, the rotation of the
hodograph by 90° not only will provide the scale of the
trajectories~as we will see shortly!, it also assures us that the
center of the hodograph is just the center of the force. That
proves~i!. It is worthwhile to see this procedure worked out
in detail.

In Fig. 10, an orbit is divided into eight equal angles of
45° each. The displacements are sketched from A to B, B to
C, and so on. These directions give the direction of the vari-
ous v ’s, but the size of the displacements are not all in the
same proportion as the average velocities, as different inter-
vals take different times. If the common size of theDv’s is
set arbitrarily, the sizes of the other velocities are deter-
mined, because the directions are set by the original diagram.
The normals to the rotatedDv’s are all directed toward a

Fig. 8. The construction is a parabola.

Fig. 9. Physically justifying the trajectory.
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fixed point. Draw all eight average velocities from this com-
mon fixed point, and connect their heads by the appropriate
Dv. What results is an octagon. Choosing a smaller angleDu
increases the number of sides, and the polygon hodograph
more nearly approximates a circle. Note that theorigin of the
hodograph, the common end point of all the velocity vectors,
is not the center of the circle; these two points will turn out
to be the foci of elliptical or hyperbolic orbits. For the pa-
rabola, the circle’s center will be the single focus of the
curve.

The proof of~ii ! is more complicated~for uniform circular
motion, however, it is obvious!. We should consider sepa-
rately the three cases of hyperbola, ellipse, and parabola.
Proofs for the ellipse and the hyperbola are nearly identical,
so we’ll consider here only those for the ellipse and the pa-
rabola. Maxwell dealt only with elliptical orbits, and based
his proof on the director circle.40 Kelvin and Tait treated all
three conics, but used the auxiliary circle~the tangent at the
vertex for the parabola.!.41 Maxwell’s proof seems simpler
and more physical, and it can be extended to the parabola
without difficulty; that extension is given below. First, Max-
well’s demonstration for the ellipse is given~Fig. 11!.

Consider the ellipse ATP with foci M, S~S standing for
the sun, A the aphelion, and P the perihelion!. Let T be any
point on the ellipse, and draw SU through T, such that

SU5AP. Draw a line from M to U. It remains to be shown
that UM is perpendicular to, and proportional to, the velocity
at point T, and that the locus of U is a circle.

(E1) In the ellipse, UM is perpendicular to the velocity at
T. Draw a tangent from T to intersect UM at Z. Then by the
ellipse optical theorem, /STY5/MTZ, so /MTZ
5/UTZ. Also, UT5SU2TS5AP2TS5MT, so ZT'UM.
Then the direction of UM is perpendicular to the tangent, and
hence the velocity, at T.

(E2) In the ellipse, UM is proportional to the velocity at
T. Draw a perpendicular line from S to the tangent to inter-
sect the tangent at Y. Letv be the velocity at T, of lengthv.
By the conservation of angular momentum,v•YS5h, a con-
stant. Recall~from Sec. II A 1 above! ZM•YS5b2. Then

1/YS5v/h5ZM/b2,

or

ZM5~b2/h!v5 1
2UM ~3.7!

so UM is proportional tov.
Since SU is always equal to the major axis, it follows that

the locus of U is a circle, with common origin of the velocity
vectors at M; this circle is the hodograph turned through 90°
~because UM is perpendicular tov!. For comparison with the
parabolic case, note that we can write

UM5~2ap/h!v, ~3.8!

where p5b2/a is the ‘‘parameter’’ orlatus rectumof the
ellipse; the perpendicular distance from the axis at the focus
to the ellipse.

Now for the parabola~Fig. 12!. Consider the parabola AP,
focus at S, axis AS, vertex A, directrix LD; let AD5a, so
AS5a and DS52a. Let T be any point on the parabola.
Draw the tangent at T and draw KT parallel to AS. Extend
the axis from S to M so that SM5DS. Draw a line from S
through T to point U so that SU5SM5DS. Finally, draw
MU. As before, the locus of U is a circle, as SU52a, a fixed
length. It remains to be shown that UM is perpendicular to,
and proportional to, the velocity at point T.

(P1) In the parabola, UM is perpendicular to the velocity
at T. Draw the tangent at the vertex, and let it intersect at Z
the tangent drawn at T. Draw the line SZ, which by New-

Fig. 10. Construction of the hodograph for an orbit:~a! the orbit divided into
8 arcs of 45 degrees,~b! pulling out the velocities, choosing a size forDv,
~c! subtracting the velocities~resizing AB, BC!, ~d! the completed
hodograph: an octagon.

Fig. 11. Finding the hodograph for an elliptical orbit.
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ton’s theorem is perpendicular to the tangent TZ. Draw ZK.
By the optical theorem,/KTZ5/STZ. T, on the parabola,
is equidistant from LD and from S, soDSTZ5DKTZ, and
S, Z, and K are collinear. Then/TKZ5/TSZ, but
/TKZ5/ZSA. Then/TSA is twice as large as/ZSA,
and hence/UMS5/ZSA. Then UM is parallel to SZ, and
as SZ is perpendicular to the tangent, so too is UM.

(P2) In the parabola, UM is proportional to the velocity
at T. Since the rate at which the area changes is constant,
v•SZ5h, a constant, so (v/h)51/SZ. From (P1), UM is
parallel to SK. Then SK:UM5ST:US52SZ:UM, so

ST52SZ~US/UM!. ~3.9!

We can also sayDTZK5DTZS and/ZSA5/ZKT, so

ST5SZ2/AS. ~3.10!

Setting these two expressions equal to each other, we find
~recall AS5a, and US52a)

UM54a2/SZ54~a2/h!v ~3.11!

so UM is again proportional tov. The latus rectumfor a
parabola, defined exactly the same as for an ellipse, has the
value 2a. Again we can write

UM5~2ap/h!v, ~3.88!

in agreement with the earlier expression~3.8! for the ellipse.
Given Kepler’s second law, and either an elliptical or

parabolic trajectory, the hodograph has been shown to be a
circle. The same can be done for hyperbolic trajectories as
well. Therefore, given Kepler’s second law and a conic tra-
jectory, the hodograph is a circle. That proves Hamilton’s
Theorem,~ii !.

IV. THE HODOGRAPHIC SOLUTIONS

A. The direct problem

We want to show that, given Kepler’s Laws, the force is
~i! directed toward one focus, and~ii ! inverse square. We
follow Maxwell’s proof42 ~a different but similar version is
given by Kelvin and Tait43!.

Kepler’s first law says that the trajectory is an ellipse.
Hamilton’s theorem tells us that Kepler’s first two laws guar-
antee the hodograph is a circle. Let the hodograph be as
shown in Fig. 10, a circle with center S and radius equal to
AP. The tip of the velocity at U will move along the arc
~toward W, say! of the circle. As the direction of the velocity
is perpendicular to UM, so the acceleration is perpendicular

to the tangent of the circle; that is, it is directed toward S.
The force is parallel to the acceleration, and so it too is
directed toward S, a focus of the ellipse. That proves~i!. ~A
similar proof could be constructed for parabolic trajectories.!

By Kepler’s second law,r 2Du/Dt5h, a constant, so
Du/Dt}1/r 2. In a timeDt let the hodograph tip move from
U to W. Because the hodograph is a circle,Dv}Du between
neighboring points T and V on the conic. That is, the accel-
eration a5Dv/Dt}Du/Dt, and thereforea}1/r 2. That
proves~ii !, and the direct problem is solved.

B. The inverse problem

Now we want to construct, geometrically, the trajectories
corresponding to the hodograph. With an inverse square
force directed toward the sun, the hodograph is a circle. Let
the hodograph have a radiusz, let its origin M be inside the
circle, and let its center be S, corresponding to the sun~Fig.
13!. We know that the center of the hodograph corresponds
to the sun, because~having rotated the hodograph! the accel-
erations are radial. For a given velocityv5MU, draw a per-
pendicular line at W a distanceav from the origin M where
a is some numerical factor. Ifa is chosen correctly, a point
on the trajectory will be found by the intersection T of this
perpendicular line~which is the actual direction of the tan-
gent! with the radius drawn to U; since the accelerations are
radial, the radius vector ST corresponding to MU must lie on
the line SU.Anyperpendicular line to the rotated hodograph
ray will be parallel to the actual velocity, and therefore will
be in the right direction for a tangent; the envelope of all
tangents will give us the trajectory. Only one question re-
mains: How far along MU should W be chosen, i.e., what is
the value ofa?

From what we know of the director circle, we might think
that W should be the bisector of MU as shown in Fig. 13.
This is Feynman’s construction. In fact,no other choiceof a
perpendicular line to UM will produce an ellipse, as a little
trial and error will show. Feynman, in the short span of the
allotted hour for his ‘‘Lost Lecture,’’ did not explain why the
unique geometricchoice of the bisector, ora5 1

2, is the
uniquephysicalchoice. The answer, as in the horizontal pro-
jectile, again depends on angular momentum. There, the an-
swer followed from the change ofL; here, from the need to
conserve it.

Consider the apsides~Fig. 14!. For the aphelion velocity
va5MD, the perpendicular will be at point A, where

AM5ava ~4.1!

Fig. 12. Finding the hodograph for a parabolic orbit.

Fig. 13. Finding the right distance.
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and similarly for the perihelion velocityvp5ME, the per-
pendicular will be at point P, where

MP5avp . ~4.2!

Then the radiir p and r a for the perihelion and aphelion,
respectively, are found from the relations~again,b is some
scale factor!

br p5SP5MP2MS5avp2MS, ~4.3!

br a5SA5MS1AM5MS1ava . ~4.4!

Conservation of angular momentum at the apsides de-
mandsL5mrava5mrpvp . Substituting in the expressions
for the perihelion and aphelion radii, and rearranging, leads
to

a~vp
22va

2!5MS~vp1va! ~4.5!

or dividing,

a~vp2va!5MS. ~4.6!

But

vp5z1MS, va5z2MS ~4.7!

so a5 1
2. Consequently, if the hodograph origin lies inside

the circle, we are forced by angular momentum conservation
into the construction of an elliptical orbit.

This construction conserves angular momentum at the ap-
sides. IsL conserved everywhere? Let the radius of the
hodograph equalz, as before, and for convenience let MS
5k ~Fig. 15!. The orbital radii are obtained by Feynman’s

construction; draw the perpendicular bisector at J of the ve-
locity UM to intersect SU at T; ST is the radius vector cor-
responding to the velocity UM, and the locus of T is the
elliptical trajectory. Letu5/MUS. Then by construction
1
2 v5(z2br )cosu, or

br cosu5z cosu2 1
2v. ~4.8!

The constant value of L may be found by evaluating it for
either apside. For the perihelionLp5mvpr p ; but from the
scale of the orbit in the hodograph found earlier,

br p5 1
2vp2k5 1

2~z2k!, ~4.9!

Lp5mvpr p5 1
2~m/b!~z22k2!. ~4.10!

The value of the angular momentum at any radiusr is, using
~4.8! ~note the definition of the angle!,

L5mvr sin~902u!

5mvr cosu

5~m/b!vz cosu2 1
2~m/b!v2. ~4.11!

We need to show that this is the same as1
2 (m/b)(z22k2).

By the law of cosines,k25v21z222vz cosu. Multiplying
both sides of this equation by12 (m/b) gives

L5~m/b!vz cosu2 1
2~m/b!v2

5 1
2~m/b!~z22k2!5Lp ,

so angular momentum is conserved.
For completeness, let’s find the value ofb. We know that

the hodograph is just the director circle; i.e.,z52ba. Also
k52bc, the distance between the foci. Then

z22k254b2~a22c2!54b2b2,
~4.12!

b5L/2mb2.

It is known for elliptical orbits thatE52GMm/2a, but E
5Ep5L2/2mrp

22GMm/r p . Since r p5a2c, we can find
L25GMm2b2/a5GMm2p, wherep is the latus rectumfor
an ellipse,p5b2/a. Then

b5~ 1
2!~GM/ab2!1/25~1/2a!~GM/p!1/2 ~4.13!

andz52ab5GMm/L, as we found earlier.
For later reference, note that we can also say

L52mapb5~GMm2p!1/2. ~4.14!

If the hodograph origin lies outside the circle, the con-
struction above will produce a hyperbolic trajectory, as can
be shown very quickly. It might be expected that if the origin
lies on the circle, the algorithm would produce a parabola. A
few moments with pencil and paper will show that the algo-
rithm fails badly in this case. In what follows, a different
algorithm is described and shown to produce a parabolic
trajectory which indeed conserves angular momentum.

As before, we have a circular hodograph of radiusz with
center S and hodograph origin M, on the circle as shown
~Fig. 16!. Draw the ‘‘director circle’’—the directrix, KD—as
shown. Following the same procedure as before, draw a
chord from M and a radius from the center S to a common
point U on the circle. Now draw a line from S parallel to the
chord UM to the directrix at W. Finally, draw a line from W

Fig. 14. Setting the scale for the ellipse.

Fig. 15. Conservation of angular momentum for the ellipse.
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perpendicular to the directrix, intersecting the radius SU at T.
ST is the radius vector corresponding to the velocity UM,
and the locus of T will be the trajectory.

By construction, the line SW is parallel to UM, so
/UMS5/WSD. On the other hand,/USD has twice the
measure of/UMS, because both angles cut off the same
arc, but the former angle is inscribed, while the latter is a
central angle. Then/USW5/WSD5/TWS since TK is
parallel to SD, so T is equidistant from the directrix and the
focus S; the locus of T is a parabola.

To show the conservation of angular momentum, let’s first
find the constant value ofL. The greatest velocity the object
attains is equal to MD52z. This occurs for the perihelion, at
a distance of12 (z/b)5a from D ~recall the distance from the
focus to the vertex isa!. The angular momentum at the peri-
helion is thus

Lp5m~2z!~ 1
2z/b!5~m/b!z2. ~4.15!

At an arbitrary point T, letu be the central angle between
ST and the parabola axis SD, and

L5mvr sin~902 1
2u!5mvr cos1

2u.

From the diagram~Fig. 16!,

z5br 1br cosu52br cos2 1
2u, ~4.16!

v sin 1
2u5z sinu52z sin 1

2u cos1
2u. ~4.17!

Solving for v and plugging into~4.16! leads to

L52mzrcos2 1
2u5~m/b!z25Lp

and once again angular momentum is conserved. It is well
known that the total energy of a parabolic orbit is zero. The
value ofb may be obtained from considering the energy at
the perihelion;E5 1

2 mvp
22GMm/r p50, and usingvp52z,

r p5a, andz52ba we find

b5~GM/8a3!1/25~1/2a!~GM/p!1/2; ~4.18!

for the parabola, thelatus rectum p52a. Notice that for-
mally b is identical for the ellipse and the parabola, as might
have been expected, though thelatus rectumhas different
values for the two conics.

We can write the angular momentum for the parabola as

L5~m/b!z252mapb5~GMm2p!1/2, ~4.19!

which is again formally identical to the ellipse expression.
Solving forp and usingz52ba, we again obtain Hamilton’s
result for the radius of the hodographz5GMm/L, exactly
as before. Thus, an inverse-square law produces a circular
hodograph; a circular hodograph generates

d a parabolic trajectory when the hodograph origin lies on
the circle,

d an elliptical orbit when the hodograph origin lies inside the
circle, and by extension

d a hyperbolic trajectory when the hodograph origin lies out-
side the circle;

in each case the constancy of angular momentum guarantees
that we have found the right scale. Then the inverse-square
law leads to a conic section trajectory, and the inverse prob-
lem is solved.
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lag, Boston, 1990!, Sec. 6. ‘‘Did Newton prove that orbits are elliptic?,’’
pp. 30–33.

13François De Gandt,Force and Geometry in Newton’s Principia, translated
by Curtis Wilson~Princeton U.P., Princeton, NJ, 1995!, p. 264.

14E. J. Aiton, ‘‘The inverse problem of central forces,’’ Ann. Sci.20 ~1!,
81–99~1964!.

15J. Bruce Brackenridge, Ref. 3; see also ‘‘The critical role of curvature in
Newton’s developing dynamics,’’ Chap. 8 in P. M. Harman and Alan E.
Shapiro, eds.,The Investigation of Difficult Things: Essays on Newton and
the History of the Exact Sciences in Honour of D. T. Whiteside~Cam-
bridge U.P., Cambridge, 1992!, pp. 231–260.

16S. Chandrasekhar,Newton’s Principia for the Common Reader~Oxford
U.P., Oxford, 1995!, Chap. 6, pp. 93–113.

17See Ref. 13.
18Dana Densmore and William H. Donahue,Newton’s Principia: The Cen-

tral Argument~Green Lion Press, Santa Fe, NM, 1995!.
19D. T. Whiteside,The Mathematical Papers of Isaac Newton v. VI, 1684–

1691 ~Cambridge U.P., Cambridge, 1974!.
20R. Catesby Taliaferro,Apollonius, Conics Books I–III , in Great Books of

the Western World Vol. 11~Encyclopedia Britannica, Chicago, 1952!. All
that is needed from Apollonius for this article may be found in Taliaferro’s
translation. The current edition of the Great Books no longer includes the

Conics. Taliaferro’s translation has recently been revised and reissued by
Dana Densmore;Apollonius Conics Books I–III ~Green Lion Press, Santa
Fe, NM, 1998!.

21D. M. Y. Sommerville,Analytical Conics~Bell, London, 1924!, p. 49.
22See Ref. 21.
23Analytic proofs of the optical theorems may be found in S. Salas and E.

Hille, Calculus: One and Several Variables~Xerox College Publishing,
Waltham, MA, 1971!, pp. 267–269~parabola! and pp. 277–279~ellipse!.

24See Ref. 21, p. 74.
25Thomas L. Hankins,Sir William Rowan Hamilton~The Johns Hopkins

U.P., Baltimore, MD, 1980!, p. 327.
26Edwin Birdwell Wilson,Vector Analysis, a Textbook for the Use of Stu-

dents of Mathematics and Physics, Founded upon the Lectures of J. Wil-
lard Gibbs, Ph.D., LL.D. ~Yale U.P., New Haven, CT, 1901!, Sec. 59, pp.
127–131.

27See Ref. 7, pp. 345–347.
28See Ref. 6, pp. 158–159.
29Sir William Thomson and Peter Guthrie Tait,Elements of Natural Phi-

losophy~Cambridge U.P., Cambridge, UK, 1879!, p. 14. Reprinted by P.
F. Collier & Sons, New York, 1903.

30Herbert Goldstein, third citation in Ref. 5, p. 1123.
31Sir William Thomson and Peter Guthrie Tait,A Treatise on Natural Phi-

losophy ~Cambridge U.P., Cambridge, 1912!, Secs. 37–38, pp. 26–28.
Reprinted asPrinciples of Mechanics and Dynamics~Dover, New York,
1962!.

32See Ref. 25, pp. 331–332.
33Sir William Rowan Hamilton, first citation in Ref. 4, p. 288.
34See Ref. 29, Sec. 61, p. 17.
35James Clerk Maxwell,Matter and Motion~Dover, New York, 1952!, Sec.

133, pp. 108–109.
36See Ref. 7, pp. 346–347.
37See Ref. 6, pp. 158–160.
38See Ref. 6, pp. 154–156. See also Richard P. Feynman,The Character of

Physical Law~MIT, Cambridge, MA, 1967!, Chap. 2, ‘‘The Relation of
Mathematics to Physics,’’ pp. 35–37, for a geometric demonstration that a
radial force guarantees Kepler’s second law, ‘‘equal areas are swept out in
equal times.’’ Feynman credits his demonstration to Newton; see Ref. 9,
Proposition I, Theorem I, p. 40.

39Sir William Rowan Hamilton, first citation in Ref. 4, p. 288.
40See Ref. 35, p. 108.
41See Ref. 29, Sec. 51, p. 15.
42See Ref. 35, p. 109.
43See Ref. 29, Sec. 62, p. 17.

ROCKET SCIENTISTS

In the financial industry, physicists, along with other scientists, engineers and mathematicians,
generally apply their skills to what is called quantitative finance. For that reason, such people earn
the nickname ‘‘quants.’’ Another sobriquet is ‘‘rocket scientists.’’ Frankly, these are not terms of
endearment. They are mildly disparaging labels that tend to distract the listener from fully per-
ceiving the value added by physicists. Unfortunately, many physicists willingly comply with this
pigeonholing. This is true not only on Wall Street but throughout society. For reasons unfathom-
able, physicists accept, and perhaps enjoy, being considered rumpled, eccentric and prone to
irrational bursts of intellectual energy.

Joseph M. Pimbley, ‘‘Physicists in Finance,’’ Physics Today50 ~1!, 42–47~1997!.

489 489Am. J. Phys., Vol. 69, No. 4, April 2001 David Derbes


