MECÂNICA GERAL - 2/2017 LISTA 3

1. Neste exercício você vai lidar com as origens físicas distintas das forças de arrasto linear e quadrático.

A origem da força de arrasto linear numa esfera em movimento no interior de um fluido é a viscosidade deste fluido. De acordo com a lei de Stokes, o arrasto viscoso sobre a esfera é

$$f_{lin} = 3 \pi \eta D v$$

onde η é a viscosidade do fluido, D é o diâmetro da esfera, e v sua velocidade, sendo portanto da forma $f_{lin} = b v$, com $b = \beta D$ e onde β depende das características do fluido.

(a) Dado que a viscosidade do ar nas CNTP é $\eta = 1,7 \times 10^{-5} N \, s/m^2$, determine o valor de β .

A origem da força de arrasto quadrática sobre um projétil que se desloca no interior de um fluido é a inércia do fluido que o projétil tem que deslocar para se mover.

- (b) Suponha que o projétil tenha uma área de seção reta A (normal a sua velocidade) e uma velocidade v, e que a densidade do fluido seja ρ . Mostre que a taxa com que o projétil tem que deslocar o fluido para se mover (isto é, a massa de fluido que tem que ser deslocada po unidade de tempo) é $\rho A v$.
- (c) Fazendo a hipótese simplificadora de que todo o fluido empurrado pelo projétil é acelerado até a mesma velocidade v com que o projétil se move, mostre que a força de arrasto resultante sobre o projétil é $\rho A v^2$. (Apesar desta hipótese não ser muito plausível, é de se esperar que a força de arrasto real tenha a forma $f_{quad} = \kappa \rho A v^2$, onde $\kappa < 1$ e depende da forma do projétil, sendo pequeno para um de forma "aerodinâmica" e maior para um objeto de extremidade rombuda. Isto é, de fato, verdade, e o fator κ para uma esfera é, na realidade, $\kappa = 1/4$.)
- (d) A expressão acima tem, como previsto, a forma $f_{quad}=c\,v^2$, com $c=\gamma\,D^2$ e γ dependente das características do fluido e do projétil. Dado que a densidade do ar nas CNTP é $\rho=1,29kg/m^3$ obtenha o valor de γ para uma esfera.
- 2. Na questão anterior você obteve as expressões das forças de arrasto linear e quadrática sobre uma esfera que se move em um fluido.
- (a) Mostre que a razão entre estas duas forças pode ser escrita como $f_{quad}/f_{lin}=R/48$, onde o número adimensional de Reynolds R é

$$R = \frac{D \, v \, \rho}{\eta}$$

onde D é o diâmetro da esfera, v sua velocidade, e ρ e η são a densidade e a viscosidade do fluido. (O fator numérico 48 é específico da forma esférica). O número de Reynolds é claramente uma medida da importância relativa dos dois tipos de força de arrasto. Quando R é muito grande, o arrasto quadrático é dominante e o linear pode ser desprezado, e vice-versa quando R é muito pequeno.

- (b) Determine o número de Reynolds para uma esfera metálica, de diâmetro 2mm, que se move a 5cm/s através de glicerina, que tem densidade $1,3g/cm^3$ e viscosidade $12N s/m^2$ nas CNTP.
- 3. Suponha que um projétil sujeito a uma força de arrasto linear seja lançado verticalmente para baixo com velocidade inicial v_{y0} maior que a velocidade terminal v_{ter} . Descreva como sua velocidade

varia com o tempo, e faça um gráfico de v_y em função do tempo t para o caso em que $v_{y0} = 2 v_{ter}$. O que mudaria neste gráfico se v_{y0} fosse menor que v_{ter} ?

4. Um projétil de massa m tem velocidade v_0 no instante t=0 e se move sobre um plano horizontal sem atrito em um meio onde a força de arrasto é $F(v)=-c\,v^{3/2}$. Use o método de separação de variáveis para obter v como função do tempo t e dos demais parâmetros dados. Em que instante o projétil alcança o repouso?