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Abstract. The  isotropic  harmonic  oscillator is studied 
under  the  action of a  central  perturbative  force np/r'"'.  
where n is a non-zero  integer.  The  case n = 2 is solved 
exactly.  For  other  values of n a  perturbative  method  that 
allows  the  determination of the  speed of precession  and 
the  polar  equation of the  orbit is developed:  the  method 
is also  applied  to  the  case of the  charged  isotropic 
oscillator in a  constant  magnetic  field. 

1. Introduction 
In a  recent  paper  published in this  journal  Sivardiere 
[l] discussed  Kepler  and  harmonic  elliptic  motion 
perturbed by an  inverse-cube  force  law.  This is an 
important  pedagogical  as well as  a  practical discus- 
sion  topic  since  pure  Kepler or harmonic  motion  are 
never  realised in nature.  Precession  phenomena 
associated with planetary  motion  are  perhaps  the 
most striking  evidence of the  importance of this 
problem. In Sivardiere's  paper  one  particular 
feature in the  treatment of the  perturbed  isotropic 
harmonic  motion  has  attracted our attention.  The 
author  states  that if some  perturbation is introduced 
the  orbit will be  a  rosette  similar  to a precessing 
ellipse and  assumes a priori that  the  polar  equation 
of the  perturbed  orbit is given by 

~ ~ ( 6 )  = cos'(y6)/a2+ sin'(y8)lb'. (1) 

Here u = l / r ,  y is a  real  parameter  that  measures  the 
departure  from  a  pure  elliptical  orbit  and a and b are 
respectively  the  major  and  minor  semi-axes of the 
ellipse.  After  substituting (1) into  the  Binet  formula 
[2]  we find that  the  force F =  F ( r ) i  acting  on  a  test 
particle is 

F ( r )  = - kr-   2Plr ' .  ( 2 )  

Resumo. 0 oscilador  harmBnico  isotropico sob  acdo  de 
uma foqa  perturbativa  de  carater  central  do  tipo 
np/rn". onde n e urn inteiro  diferente  de  zero, e 
estudado. 0 caso IZ = 2 e resolvido  exatamente.  Para 
outros  valores  de I I  urn metodo  perturbativo  que  permite 
obter  a  velocidade  de  precessdo  e  a  equacdo  polar  da 
orbita e desenvolvido; o metodo e aplicado  ainda  ao  caso 
do  oscilador  isotropico  carregado  em um campo 
magnktico  constante. 

Consequently,  the  associated  central  potential is 

U ( r )  = kr'l2  -Plr' ( 3 )  
where k and  are  constants  depending  on y .  
Actually,  the  solution given by (1) can be obtained 
by solving  the  equations of motion  directly,  a  pro- 
cedure of moderate difficulty that  can  be  taught  to 
the  average  student  at  intermediate  level. 

In  further  examining  the  perturbed  oscillator 
problem we have  considered  the  effects of the  types 
of force r$lr"+'. Some  interesting  results such as  the 
speed of precession  and  the  form of the  orbit  can  be 
obtained in an  approximate way and  compared with 
results  obtained  elsewhere [3.4]. It is our purpose in 
this paper  to  discuss  the  above-mentioned  results. 
We  have  also  included  the  case of the  charged 
oscillator in a constant  magnetic field that  can  be 
treated in a  similar  way. 

2. The perturbed isotropic harmonic oscillator 
We  shall  start by recalling briefly the  isotropic  har- 
monic  oscillator in polar  coordinates r and 6 .  F o r  
this case  the  equations of motion  read 

m i " m r 6 ' f k r = O  (4) 
and 

mr'8 = I  (5) 
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where l is the  angular  momentum which is conserved 
due  to  the  central  character of the  force.  Combining 
(4) and (5) we can  write 

r + w'y - ['/tn?r' = 0 (6) 
where 0' = k i m .  

The  solution of this  equation is given  in detail 
below.  Consider  now  the  isotropic  oscillator  per- 
turbed by an  inverse-cube  force  law.  The  equation 
of motion in this  case  reads 

m r -  mr$+  kr  + 2Plr'= O ( 7 )  

which,  combined  with  the  conservation of angular 
momentum, gives 

r + - = 0 

with the  difference  that  now l' is a  constant  with 
dimensions of angular  momentum 

(8) 

[ l  = (1'- 2pm)"'. (9) 

Equation (8) is a  non-linear  differential  equation. 
but  fortunately  solvable by an  analytical  procedure 
that  goes  as  follows.  First  we  integrate  the  radial 
coordinate  to  obtain 

i? + w?r' .+ /'?/m?r' = 2E/m (10) 

which expresses  the  conservation of mechanical 
energy.  Using (8) and  multiplying by r we can  write 

22 1 

for a'> b'. Putting x = 2wt+ 2al,, after  some  alge- 
braic  manipulation we finally obtain 

Substituting (10) into (11) we find a  simple  harmonic 
oscillator  differential  equation  for  the  square of the 
radial  coordinate 

The  solution is 

r2 ( t )  = ( E l k )  + A  cos[2(wt + U,, )] (13) 

where A and ali are  constants of integration.  We  can 
easily relate A with I '  and E by substituting  the  time 
derivative of (13) into (10). After  recalling  that 
W' = k l t n  some  simple  algebra gives 

A = ( E ? - o ? / l ? ) l ' ? / k .  (14) 
Now we calculate  the  time  angular  variation O ( r ) .  
From (13) and  (5) we have 

dt 
E + k A  cos[2(ot+ a, , ) ]  (15) 

where O,,  is a  constant of integration.  This is a 
standard  integral [S] 

E - k A  
tan(ot + all). (16) 

The  reader  can  see  that  the  same  procedure  applies 
to  the  non-perturbed  case ( p  =0); all that is necess- 
ary  here is to  replace I' by 1. 

Equations (13) and (16) are  the  parametric  equa- 
tions of the  perturbed  orbit. If we eliminate  time we 
will obtain  equation (1). which describes  the  orbit in 
space. As a  matter of fact. (1) corresponds to a 
special  choice of the  constants a,, and  From  now 
on we will assume  that O, ,  = 0 and all = 0. 

Now. if we take  the  square of (16) (with U , ,  = 0 ,  
0,) 7 0) and  make  use of the  trigonometric  relation 
tan-or = cos-' o r  - 1 ,  we can  write 

cosZ(wt) = 
( E  - kA)' 

tu"'' tan'($) + ( E  - kA)' (17) 

where we have  identified  the  ratio I ' l l  with the  real 
parameter y mentioned  earlier. Since cos2wr= 
2cos'ot- 1. we can  combine (13) and (17) to  obtain 
finally 

, 1 cos'(y8) sin'(y8) 
L(-=7 = ~ +- 

r -  U? b' (18) 

where  the  semi-axes a and b are given respectively 

a" = ( E l k )  + A  (19) 
by 

and 

b'= ( E i k )  - A  (20) 

where A is defined in (14). These  expressions for a 
and b are easily obtained  from (13) by setting t = 0 
and t = n12w respectively. It also follows from (19) 
and (20) that  the  total  mechanical  energy is given by 

E = j k ( a ' + b ' ) .  (21) 

When y is different  from unity precession will 
arise.  Let us then  calculate  the  mean  precession  rate 
(Q). In contrast  to  the  Kepler  problem  the  angle 
between  two successive periapses is n l y  (and  not 2x1 
7) .  Therefore, we have  approximately 

(Q) =W, ,  ( l  - ; / j l ;J ( 2 2 )  

where ut, = 2nlrt, is the  angular  frequency  and r(, the 
angular  period.  From (9) we can  write  for  a small 
perturbation 

y = l ' I I =  1 -pmIl' ( 2 3 )  

and 

(R)=o,,pnlIl'. (24) 

By multiplying (19) and (20), and  substituting (9). 
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we have 
I' =mkm'b'( I + 2/l/ku2b'). ( 2 5 )  

Substituting (25) into (24) we finally obtain 

which disagrees by a  factor of 2 with  Sivardiere's 
result.  This is due  to  an  incorrect  assumption  for  the 
angle between  two successive periapses. 

3. The oscillator under an arbitrary central 
perturbation 
We will consider  now  the  isotropic  harmonic oscil- 
lator  perturbed by an  arbitrary  central  potential  of 
the  type p l r " ,  where n is a  non-zero  integer. In this 
case  the  potential  function is U ( r )  = jkr' -@/r"  and 
the  Binet  formula  reads 

d'u nut rnnpui""J 
de' I' ( 27 )  

where 14 = l i r .  
Exact  analytical  solutions of (27) are  not  known 

except  for a few cases  and  perturbative  methods  are 
unavoidable if we wish to  obtain  some  knowledge 
about  the  mean  precession  rate (Q),, and  the  polar 
equation of the  orbit .,(e). Therefore  let us 
consider  the  situation of stable  approximately  circu- 
lar  orbits. For a circular  orbit  the  Binet  equation 
yields 

- + 1 1 = 1 , 1 1 1 +  

1 = m k l l ' l r ~  + n ~ n B ~ ~ ~ ~ - ' l / l '  (28) 

where ~ 1 , ~  is the  inverse of the  radius of the circle rII. 
In the  case of small deviations  from  the  circular  orbit 
we can  write 

u ( 0 )  = U { )  + d(0)  (29) 

where d ( 0 )  represents  a small departure  from  the 
circular  solution.  Taking (29) into  the  Binet  formula 
and using (28) we have 

d'dId0' + o,,d = O(d '/id;) ( 3 0 )  
where U,, is given by 

o,, = 4 - [tnn(n + 2)/%&']]/I' .  (31) 

Note  that, i f  n ( n  +2),!3 is greater  than 0. to 
guarantee  the  stability of the  circular  orbit  the fol- 
lowing condition  must hold 

tnn(11 + 2)pLl/;-Y2<4. ( 3 2 )  

On  the  other  hand, if n ( n  + 2 ) P < O .  stability is 
always assured.  From now on we  will consider  only 
stable  cases.  Then  for  convenience we write o,, = C:. 
If we limit ourselves to a  linear  approximation in the 
ratio d/11,~ we can write 

0(8j=Bcos[C,,(H-H,,)~ ( 3 3 )  

where B and Ol1 are  constants of integration. For 
simplicity we take O , ,  = 0: this represents  our  choice 
of the  polar axis direction. 

We  can  now  calculate  the  mean  rate of preces- 
sion. If B is small we can  rewrite C,,. to  first-order 
approximation, as 

c,, = 2( 1 - E,, ) (34) 
where E,, is given by 

E, ,  = [ t7 l I7( t l  + 2)@11/r-2']/81'. ( 3 5 )  

Therefore, 

h,,(@ = B  cos[2( 1 - €,,)e].  (36) 

For the  perturbed  oscillator @ # U )  the  angle 
between  two successive periapses is 

A H = 2 ~ / 2 ( 1  - E ) , ) .  ( 3 7 )  
Note  that c,,=O (unperturbed  oscillator)  leads  to 
A 0 = n  as expected.  Defining Ap as the  precession 
angle of the  apoapsis  (see figure l ) ,  we have 

A $ = A O - Z = Z F , , ,  ( 3 8 )  

The  mean  rate of precession is 

(Q),, Apir, l ,2 (D&. (39) 

For n = 2 the  perturbation is an inverse-cube  force 
law and we obtain 

(Q): = w,,tn/j/l' (40) 

in agreement with (21).  
Before  concluding  this  section let us re-examine 

the  polar  equation of the  orbit.  Starting  from (29) 
and  keeping only terms  up  to first order in d .  we can 
write 

r = r I l ( l + r l l ~ ) " = r l l - p c o s ( C , , H )  (41) 

where we have used (33) and  defined p = - r:lB. The 
maximum  and  the  minimum  values of r .  that we will 
identify with the  major  and  the  minor  semi-axes of a 
precessing  ellipse.  are given respectively by a = rl, + 
p and b = ' , , - p .  It  follows  that B = ( a  - b ) / 2 r ; , .  
Taking  the  square of a and b and  summing "e find 
that U' + h'= 2r; + O( p') and a'b' = r:, + O( p:). 
Therefore, we can  write 

L(;= l l r i = ( a ' +  h')t2u'h' (42) 
and 

21(,,B = (h'-  u')I1u'b2. (43) 

Now,  taking  the  square of (29) and  combining (33). 
(42) and (43). we obtain 

where we have set C,, = 2y,,. Using  the  trigonometric 
relation cos2x = 2cos'x - 1. we finally obtain 
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r t  

Figure 1. The  angle of precession of the  apoapsis A q  
during a half-period of revolution. 

What  do all these  algebraic  manipulations  mean?  If 
n is equal  to 2 we have  proved  that  the  orbit is a 
precessing  ellipse.  Note  that  this is true  even  when 
the  orbit is far  from  circular.  But if n is not  equal to 2 
and  the  strength of the perturbation  weak  enough so 
that all the  approximations  made  are  justified,  any 
small  departure  from  a  stable  circular  orbit will also 
end in a  precessing  ellipse no matter  the  value of n .  
Of course.  the  mean  rate of precession will be 
different-one  for  each  value of n.  

4. The charged oscillator in a constant magnetic 
field 
We  conclude by considering  the  case  where  the 
oscillator is placed in  a  constant  magnetic  field. It 
will be shown  that. if the  equations of motion  can be 
treated in  a  perturbative  way. it is possible to obtain 
the  Larmor  frequency  without  making use of inertial 
forces as is usual in many  textbooks  (see  for  example 
references [2-6]). For simplicity we choose B per- 
pendicular  to  the  plane of the  orbit. V ,  . B  = 0 ,  
where V is the initial velocity. In polar  coordinates 
the  equations of motion  are 

VI(?- r 0 ' )  = - kr-   eBr0 (36)  

and 

( l i r ) ( d / d f ) ( m r ' i ) ) = e B ~  B = B ( t d ) .  ( 3 7 )  

It follows  from ( 3 7 )  that  the  angular  speed k is 
given by 

0 = W ,  + c,/rnr' (48) 

where c ,  is a  constant of integration  and (uL = rB i2m 
is the  Larmor  frequency. If B=O. then c ,  is the 
conserved  angular  momentum. If B is a  weak field 
we can drop the  term eBr0 with respect  to kr in (46). 

Now  we  set 0 = 0 - o),.t. With  this  change  the  equa- 
tions of motion  become 

mi: - nlr& = - kr (49) 

0 = c, /mr' .  ( 5 0 )  

It is readily  seen  that  the  motion in the new variables 
is equivalent  to  the  motion in the  old  variables 
without  the  magnetic field. in this  case an  ellipse 
with the  geometrical  centre  at  the  centre of force. 
The  new  polar axis is defined by 0 = 0. and  hence 
0 = q t .  which means  that  the  new  polar axis rotates 
in the positive (counter-clockwise)  sense with angu- 
lar  speed w L  as  shown in figure 1. 

Therefore,  when  observed  from  the  old  refer- 
ence  frame  the  orbit will be a precessing ellipse with 
Larmor  frequency (U,. 

5 .  Conclusions 
In this work we have  shown  rigorously  that  the 
isotropic  harmonic  oscillator  describes  a  precessing 
ellipse  under an additional  inverse-cube  force  law. 
For  a  weak  inverse-cube  perturbation we calculated 
the  mean  rate of precession.  Next we treated  the 
case of the  isotropic  oscillator  under  an  arbitrary  but 
still central  perturbation of the  form p i r" .  Using  a 
perturbative  scheme  and  starting  from  unperturbed 
orbits close to  the  circle, we were  able  to  obtain  the 
polar  form of the  perturbed  orbit  and  the  mean  rate 
of precession.  Finally. we discussed  the  case of the 
isotropic  oscillator in a  constant  magnetic  field. 
Using  a  perturbative  approach  again we obtained 
the  Larmor  frequency  and  showed  that  the  per- 
turbed  trajectory is again a precessing  ellipse. I t  is 
worth  mentioning  that  the  perturbative  method 
employed  here  for  the  oscillator  plus  a  constant 
magnetic field can be easily extended  to  the  case of 
an arbitrary  central  force law plus  a  constant  magne- 
tic field. 
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