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Abstract
A reexamination of simple examples that we usually teach to our students in
introductory courses is the starting point for a discussion about the principle of
conservation of energy and Galilean invariance.

1. Introduction

When students attend an intermediate course in classical mechanics most of them are
introduced to gravity-assisted space flight or the gravitational catapult. Gravity-assisted
space flight is a major advance in orbit design and basically it works in the following way.
Consider a spacecraft of mass m that follows an orbital path and approaches a planet of
mass M which is moving with a velocity V with respect to some inertial reference system.
Let v and v′ be, respectively, the velocities of the spacecraft also measured with respect to
this inertial frame of reference, initially at a point of the path far away from the planet and
afterwards at a point also far away from it but now when the spacecraft is receding, as shown in
figure 1. This is essentially a two-body problem with the planet acting as a moving centre of
force. Moreover, we can assume that the motion of the planet is known beforehand, because
M � m.

If we consider this two-body problem in an inertial reference system in which the planet
is at rest and the initial and final velocities of the spacecraft are u and u′, respectively, then we
will have ‖u‖ = ‖u′‖ = u, because it can be argued that with respect to the planet the energy
of the spacecraft is conserved. Therefore, we write

�Espacecraft/planet = 0. (1)

Let us now analyse the problem from the point of view of an inertial observer placed at some
other location in the Solar System, for example, the Sun. Then, with respect to the Sun, the
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Figure 1. The gravitational catapult.

‘initial’ and ‘final’ velocities of the spacecraft are respectively v = u + V, and v′ = u′ + V. It
follows that the energy variation of the spacecraft with respect to the Sun is

�Espacecraft/sun = 1
2 mv′2 − 1

2 mv2 = m(u′ − u) · V. (2)

Note that the spacecraft can gain or lose energy in the process. It all depends how it approaches
the planet. This apparent breaking of the energy conservation law due to a simple change of
the reference system is certain to turn on a student’s attention. It is usually explained away by
stating that the planet must also lose or gain energy [1], although its speed remains constant!
But, is this statement compatible with the M � m hypothesis? Is it compatible with Galilean
invariance? Why is this gain or loss of energy and momentum not taken into account in
the previous analysis when the planet was at rest? Later on this same type of questioning
reappeared when we were dealing with similar problems. One of our aims here is to discuss
these questions.

The law of conservation of energy is one of the most fundamental laws of physics. In
the context of Newtonian mechanics, for an isolated mechanical system, this law assumes
a particular form and we call it the law of conservation of mechanical energy and by this
we mean that the sum of the kinetic energy and the potential energy is constant in time.
On the other hand, the laws of Newtonian physics obey the Galilean principle of relativity,
that is, they are invariant under the transformations of the Galilean group of transformations
which encompass rotations, translations and boosts. It follows that all theorems stemming
from Newton’s laws, including the principle of conservation of energy, must also be compatible
with the Galilean principle of relativity, that is, they must hold in all inertial reference
systems.

The same is true for the conservation of linear momentum or the conservation of the
angular momentum. Nevertheless, it is not difficult to find in modern texts on basic physics
examples where the initially assumed law of conservation of mechanical energy seems not to
hold in all inertial systems, which is not conceptually acceptable. A more careful examination
of those examples shows that what is being overlooked is the issue of the compatibility of the
application of the conservation law to the example at hand and Galilean invariance. In modern
basic physics textbooks, for instance [2, 3], it is usually correctly stressed that in order to
have conservation of energy, the system must be isolate, but we do not see the conservation of
mechanical energy and its invariance under Galilean transformations discussed simultaneously.
This together with assumptions not clearly stated can lead us to puzzling situations in which
the conservation law for the energy seems to hold only in some preferred reference systems.
The following two simple examples illustrate our point.
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Figure 2. Wedge and block seen from two different inertial frames. The small block of mass m
slides without friction on the surface of the wedge that stays put. This is equivalent to saying that
M → ∞ or M � m. Under what conditions can we consider the wedge as a valid inertial frame?

2. Two simple examples: wedge and block and free fall

Consider a small block whose mass is m sliding on the inclined surface of a fixed wedge (with
respect to the Earth) whose mass is M, as in figure 2. By ‘fixed’ we mean that M → ∞, or
M � m. Suppose we want to know the speed of the block when it leaves the wedge. Let
us analyse the problem from the point of view of a reference system fixed with respect to the
wedge. Let h be the initial height of the small block and for the sake of simplicity let us also
suppose that its initial velocity with respect to the wedge is zero. The usual solution we teach
to our students is based on the principle of conservation of the mechanical energy applied to
the block considered as a system. The reasons to invoke this principle are as follows:

(a) there is no friction between the surfaces in contact of the wedge and the block; and
(b) the normal force on the block does not perform work.

Then, it follows that

mgh = 1
2mv2, (3)

where v is the velocity of the block at the base of the wedge. Solving this equation for v = ‖v‖,
we obtain

v =
√

2gh. (4)

Let us consider now the same problem analysed from the point of view of an inertial
reference system moving with constant velocity −V with respect to the wedge and parallel to
its base. The initial velocity of the block in this second reference system is V and its final
velocity is v + V. Therefore, its initial energy will be

E0 = 1
2mV2 + mgh, (5)

and its final energy

E1 = 1
2m (v + V)2 . (6)

It easily follows that the variation of the mechanical energy of the small block is

�E = mv · V. (7)

This last equation shows clearly that the energy of the block is not conserved in the second
inertial system. Note also that we can no longer state that the contact forces do not perform
work. Moreover, it should be clear that the block is not an isolated mechanical system because
it is subjected to external forces: the contact force that the wedge exerts on it and its weight.
We can easily calculate the work done by the contact force and compare the result with
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Figure 3. The vector �r is the displacement of the centre of mass of the block as seen from the
point of view of an inertial reference system moving with constant velocity −V with respect to the
wedge. We also indicate the external forces that act on the block.
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Figure 4. Free fall seen from two reference systems. Here −V is the velocity of the second inertial
reference system with respect to the first.

equation (7). The work done by the normal force N is

WN = N · �r, (8)

where �r is the displacement of the centre of mass of the block as seen from the point of view
of an inertial reference system moving with constant velocity −V with respect to the wedge.
The displacement can be written as

�r = V�t + ��, (9)

where �� is the displacement of the block along the surface of the wedge, see figure 3.
Because N is perpendicular to ��, the work of the normal force is

WN = N · V�t. (10)

From the equation of motion of the block, we have

N = ma − P; (11)

hence

WN = (ma − P) · V�t = mv · V, (12)

where we have made use of a�t = v, and of the fact that P = mg is perpendicular to the
velocity of the wedge. This result is in agreement with the one given by equation (7).

As a second simple example, consider the familiar free fall problem, see figure 4. Let a
particle of mass m be released vertically from a height h above the surface of the Earth and
let us calculate its speed immediately before it hits the ground. Most of us argue that since
the mass of the Earth is enormous when compared to the mass of the free falling particle, it
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is a good approximation to consider the Earth as an inertial reference system. From this the
solution follows immediately. We write

mgh = 1
2mv2, (13)

and from this we obtain v = ‖v‖.
Let us consider the same problem from the point of view of an inertial reference system

whose velocity with respect to the Earth is −V. The initial mechanical energy of the particle
is

E0 = 1
2mV2 + mgh, (14)

and its final energy is

E1 = 1
2m (v + V)2 . (15)

The mechanical energy variation now reads

�E = mv · V. (16)

Once again the conservation of mechanical energy holds in a special reference system, the one
in which the Earth stands still.

3. The limit M → ∞
In order to shed light on the matter, let us consider the problem from a general point of view.
Let there be a system of N + M particles each with a mass mi, i = 1, . . . , N + M . Suppose that
the system is isolated and also that the internal forces can be classified into two sets, namely
the set of conservative forces and the set of forces whose total work is zero. Denoting by xi

the position and by vi the velocity of particle of mass mi with respect to an arbitrarily chosen
inertial reference system, we write the total mechanical energy E, the total linear momentum
P and the total angular momentum of the mechanical system L, respectively, as

E =
N+M∑
i=1

1

2
miv2

i + U (x1, x2, . . . , xN+M) , (17)

where U (x1, x2, . . . , xN+M) is the total internal potential energy of the system

P =
N+M∑
i=1

mivi (18)

and

L =
N+M∑
i=1

xi × m1vi . (19)

Let us divide the system into two subsystems, see figure 5(a): subsystem A formed by the
i = 1, . . . , N particles and subsystem B formed by the N + 1, . . . , N + M remaining particles.
In this way the total mechanical energy given by equation (17), the total linear momentum
given by equation (18) and the angular momentum given by equation (19) can be decomposed
in the following way:

E = TA + TB + UA + UB + UAB, (20)

P = PA + PB, (21)

L = LA + LB, (22)
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(a) (b)

Figure 5. System formed by i = 1, . . . , N particles (subsystem A, in light grey colour) plus
N + 1, . . . , N + M remaining particles (subsystem B, in dark rusty colour).

(This figure is in colour only in the electronic version)

where TA(B) is kinetic energy of system A (B), UA (B) is the potential energy of A (B) and
UAB is the interaction potential between the two subsystems. Recall that the complete system
is isolated; therefore, these mechanical quantities are conserved, that is

d

dt
(TA + UA + UAB) +

d

dt
(TB + UB) = 0, (23)

dPA

dt
+

dPB

dt
= 0, (24)

dLA

dt
+

dLB

dt
= 0. (25)

Equation (23) can be rewritten as

d

dt
(TA + UA + UAB) = − d

dt

(
1

2
MBV2

B + T ′
B

)
− dUB

dt
, (26)

where MB and VB are the mass and centre of mass velocity of subsystem B, respectively, with
respect to the inertial reference system, and T ′

B is its kinetic energy with respect to the centre
of mass. In order to consider subsystem B as a reference system suppose that the particles
belonging to B are rigidly linked one to the other, see figure 5(b). This means that its internal
potential energy is constant, UB = constant, and the kinetic energy is given by

T ′
B = 1

2ωB · I · ωB, (27)

where we have introduced the angular velocity vector ωB and the inertia tensor I of the
subsystem B. Expanding the rhs of equation (26) we obtain

d

dt
(TA + UA + UAB) = −dPB

dt
· VB − dL′

B

dt
· ωB, (28)

where L′
B is the angular momentum of subsystem B with respect to its own centre of mass.

We can write L′
B in the form

L′
B = LB − RB × PB, (29)

where RB is the position of the centre of mass of subsystem B with respect to the arbitrary
inertial reference system that we have chosen in the beginning. The time derivative of L′

B is
given by

dL′
B

dt
= dLB

dt
− RB × dPB

dt
. (30)



A note on the conservation of mechanical energy and the Galilean principle of relativity 833

Taking this result into equation (28), we get

dEAB

dt
= −dPB

dt
· VB −

(
dLB

dt
− RB × dPB

dt

)
· ωB, (31)

where we have defined the mechanical energy of subsystem A with respect to subsystem B by

EAB := TA + UA + UAB. (32)

Note that this definition corresponds exactly to the one we made use of in the examples.
For the block plus fixed wedge system, for instance, UA = constant, TA is the kinetic
energy of the block and UAB = mgh is the interaction energy between the moving block
and the fixed wedge plus Earth system that we can identify as subsystem B. Making use of
equations (24) and (25) and performing additional manipulations, we obtain

dEAB

dt
= FA · VB + (τA − RB × FA) · ωB, (33)

where FA = dPA/dt and τA = dLA/dt are, respectively, the total force and total torque
exerted on subsystem A by subsystem B. In equation (33), the only quantities related to
subsystem B are kinematical. Moreover, RB , VB and ωB depend in principle on time. In order
to consider subsystem B as an inertial reference system VB must be equal to a constant and
ωB must be zero. In this case, taking into account equations (21) and (22), we see that these
conditions can be implemented only if the mass of subsystem B is infinite. Even if subsystem
B behaves as an inertial reference system in this limit, equation (33) reduces to

dEAB

dt
= FA · VB, (34)

and this means that the energy EAB is not constant when measured with respect to an arbitrary
inertial system that moves with a constant velocity, though the total energy is. We still have
to impose an additional condition, namely VB must be zero or orthogonal to FA, and this will
be true only for a special inertial system. Only in this particular inertial system where both
conditions are satisfied, we will have

EAB = constant. (35)

The examples we dealt with in the beginning and many others follow the same line of reasoning
described here and this is the reason why they appear to violate the law of conservation of
energy when we perform a perfectly admissible Galilean boost. Equation (35) cannot be
considered as a conservation law for the mechanical energy because it holds only in the
special inertial reference system for which the velocity of subsystem B is zero. One must
always keep in mind that a true conservation law must hold in all inertial reference systems.
Moreover, equation (32) that defines this energy contains the term UAB that describes the
interaction energy of the two systems; hence, it cannot be interpreted as the total energy of
subsystem A.

4. Final remarks

In this paper we have discussed the application of the principle of conservation of energy to
mechanical systems. Through simple examples, we have shown that paradoxical situations
may arise if proper care concerning its application is not taken. There are more similar
examples that we could have considered here, such as the massless spring or the collision
between a particle and a moving wall. They all lead to the same conclusion: if we apply
a Galilean transform to them, energy is not conserved in the new inertial reference system.
Nevertheless, it must be strongly emphasized that the validity of the conservation of mechanical
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energy is not being questioned here; in contrast, our firm belief in it is the reason why we
have refrained from considering empirical arguments. What we have argued for is that the
application of the concept of conservation of mechanical energy requires a careful procedure.
In particular, we have stressed the fact that the conservation of mechanical energy, as well as
conservation of linear momentum and angular momentum, should not depend on our choice
of any particular inertial reference system.

The mechanical systems we have analysed here are frequently found in textbooks as
examples of conservation of energy, in the way they are presented; however, they are not
isolated systems, see equation (33). As a consequence, physical quantities associated with
them, such as linear momentum, angular momentum or mechanical energy, are not in general
constant, but the energy may be constant in some special inertial frame of reference. We can
summarize our results by answering the following question: How should we approach the
teaching of this important topic of the physics syllabus in order to avoid conceptual problems?
If we want to be on the safe side, one possibility is to make use of the work–kinetic energy
theorem that follows from the integration of the Newtonian equation of motion in a particular
reference system. The other possibility is the one we have advocated for here, that is: consider
the system as a whole and no conceptual problems will come in our way. There is no need to
be formal. The formal procedure we have developed here can be easily adapted and applied
to the examples in a straightforward way.
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