Fundamentos de Física Capítulo 39 Mais Ondas de Matéria

Questões Múltipla escolha cap. 39 Fundamentos de Física – Halliday Resnick Walker

- 1) Qual das frases abaixo descreve corretamente a menor energia possível para um elétron em um poço de potencial unidimensional?
- a) A menor energia possível é negativa.
- b) A menor energia possível é positiva.
- c) A menor energia possível é zero.
- d) A menor energia possível pode ser positiva, negativa ou nula, dependendo da altura do poço de potencial.
- e) Não existe menor energia possível

2) O que é um salto quântico?

- a) É a passagem de uma partícula por uma barreira de potencial.
- b) É a passagem de uma partícula de um poço de potencial para outro.
- c) É a passagem de uma partícula de um nível de energia para outro.
- d) É a passagem de uma partícula de uma situação em que exibe propriedades ondulatórias para uma situação em que exibe propriedades corpusculares.
- e) É a passagem de uma partícula de uma velocidade pequena para uma velocidade elevada.

- 3) Qual das frases abaixo descreve corretamente o que é necessário para que um fóton incidente faça um elétron passar de um estado de menor energia para um estado de maior energia?
- a) A energia do fóton deve ser igual ou maior que a energia de ponto zero.
- b) A energia do fóton deve ser igual à energia do estado de menor energia do elétron.
- c) A energia do fóton deve ser igual à energia do estado de maior energia do elétron.
- d) A energia do fóton deve ser maior que a diferença de energia entre o estado inicial e o estado final.
- e) A energia do fóton deve ser igual à diferença de energia entre o estado inicial e o estado final.
- 4) Qual é o termo usado para designar o nível de menor energia de um átomo?
- a) Energia de ionização.
- b) Energia de nucleação.
- c) Nível de Fermi.
- *d*) Estado fundamental.
- e) Função trabalho.

- 5) De acordo com o princípio de correspondência,
- a) para cada ação existe uma força correspondente.
- b) para valores muito grandes dos números quânticos, os resultados da física quântica se aproximam dos resultados da física clássica.
- c) para valores muito pequenos dos números quânticos, as ondas de matéria se tornam praticamente iguais às ondas eletromagnéticas.
- d) Os níveis de energia de uma partícula aprisionada em um poço de potencial são quantizados.
- e) Na mecânica quântica, matéria e energia são equivalentes.
- 6) Qual das afirmações abaixo, a respeito da função de onda de um elétron nas paredes de um poço de potencial infinito, é verdadeira?
- a) A função de onda é negativa.
- b) A função de onda é positiva.
- c) A função de onda é complexa.
- d) A função de onda é nula.
- e) O valor da função de onda depende do número quântico n.

- 7) Qual das afirmações abaixo, a respeito de um elétron no estado de menor energia de um poço de potencial unidimensional infinito, é verdadeira?
- a) A probabilidade de que o elétron seja encontrado nas paredes do poço é zero.
- b) A probabilidade de que o elétron seja encontrado no centro do poço é zero.
- c) A probabilidade de que o elétron seja encontrado fora do poço é diferente de zero.
- d) A probabilidade de que o elétron seja encontrado em qualquer lugar do poço é a mesma.
- e) As alternativas (a) e (b) estão corretas.
- 8) O que é a energia de ponto zero?
- a) É a menor energia que uma partícula pode possuir em nosso universo.
- b) É a energia que uma partícula possui quando está na origem do sistema de coordenadas.
- c) É a energia que uma partícula possui quando está em uma das paredes de uma barreira de potencial.
- d) É a menor energia que uma partícula confinada pode possuir.
- e) É a energia que uma partícula possui quando está no centro de um poço de potencial.

- 9) Qual é o objetivo de normalizar a função de onda de uma partícula?
- a) Assegurar que as funções de onda da partícula possam ser comparadas.
- b) Evitar que a densidade de probabilidade da partícula seja um número complexo.
- c) Evitar que a função de onda da partícula seja negativa.
- d) Assegurar que a probabilidade de encontrar a partícula em algum ponto do espaço seja 100%.
- e) Evitar que a função de onda se anule nas paredes do poço de potencial.
- 10) O quadrado de que grandeza indica a probabilidade de encontrar uma partícula em um ponto do espaço?
- a) Momento.
- b) Função de onda.
- c) Comprimento de onda.
- d) Energia.
- e) Spin.

- 11) Qual das afirmações abaixo, a respeito de um elétron no estado n= 2 de um poço unidimensional finito, é verdadeira?
- a) A probabilidade de que o elétron seja encontrado nas paredes do poço é zero.
- b) A probabilidade de que o elétron seja encontrado no centro do poço é zero.
- c) A probabilidade de que o elétron seja encontrado fora do poço é zero.
- d) A probabilidade de que o elétron seja encontrado em qualquer lugar do poço é a mesma.
- e) Nada se pode afirmar sem detalhar se a largura do poço.
- 12) Qual das opções abaixo é uma hipótese adotada por Bohr para formular seu modelo do átomo?
- a) As energias dos elétrons são quantizadas.
- b) O momento linear do elétron é quantizado.
- c) O momento angular do elétron é quantizado.
- d) A energia do estado fundamental do átomo de hidrogênio é -13,60 eV.
- e) Os elétrons formam uma nuvem em torno do núcleo.

- 13) O modelo atômico de Bohr permitiu prever com exatidão
- a) os níveis de energia do átomo de hidrogênio.
- b) o raio do núcleo do átomo de hidrogênio.
- c) a massa do elétron.
- d) a carga do elétron.
- e) o número de nêutrons dos átomos de um elemento.
- 14) Qual foi a contribuição de Johann Balmer para o estudo dos espectros atômicos?
- a) Descobriu novas linhas do espectro do hidrogênio da região do ultravioleta.
- b) Descobriu uma relação entre uma fórmula empírica para calcular os espectros de emissão do hidrogênio e o modelo atômico de Bohr.
- c) Descobriu uma equação empírica para calcular os comprimentos de onda da parte visível do espectro de emissão do hidrogênio.
- d) Estudando o espectro de absorção da luz solar, descobriu o elemento hidrogênio.
- e) Estudando os espectros atômicos, descobriu que cada elemento tem um espectro característico.

15) Qual das hipóteses abaixo está em contradição com o modelo atômico de Bohr?
a) Os elétrons emitem ondas eletromagnéticas quando se encontram em estados estacionários.
b) O átomo possui um núcleo muito pequeno cercado por elétrons.
c) Os raios das órbitas de Bohr dependem do número de prótons que o núcleo contém.
d) Os elétrons descrevem órbitas circulares em torno do núcleo.
e) Um fóton é emitido quando um elétron passa de uma órbita de maior energia para uma órbita

16) 39.8.5. Quantos números quânticos Bohr usou em seu modelo para classificar as órbitas

de menor energia.

dos elétrons?

a) 0

b) 1

c) 2

d) 3

e) 4

- 17) O que produz o poço de potencial do átomo de hidrogênio?
- a) A energia de ponto zero do átomo.
- b) A quantização do momento angular do elétron.
- c) A atração eletrostática entre o elétron e o próton.
- d) O confinamento do elétron em uma órbita.
- e) A interação magnética entre os spins do elétron e do próton.
- 18) Qual das opções abaixo não é um número quântico?
- a) Número quântico magnético orbital.
- b) Número quântico principal.
- c) Número quântico da camada.
- d) Número quântico orbital.
- e) Número quântico spin

- 19) Entre as séries de linhas do espectro do hidrogênio que aparecem abaixo, qual envolve transições para o nível fundamental?
- a) Série de Balmer.
- b) Série de Lyman.
- c) Série de Paschen.
- d) Série de Brackett.
- e) Série de Pfund.
- 20) Um elétron está em um poço de potencial infinito. A densidade de probabilidade de P(x) varia de acordo com a figura ao lado. Qual é o valor do número quântico principal?

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4