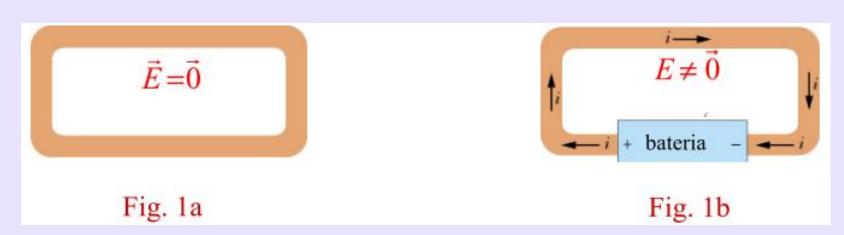

Corrente Elétrica

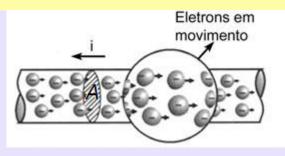
Prof. Fábio de Oliveira Borges

Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil


https://cursos.if.uff.br/!fisica2-0217/doku.php

Corrente elétrica

Corrente elétrica ⇒ um movimento ordenado de cargas elétricas.

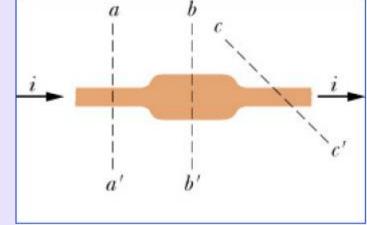

Um circuito condutor isolado, como na Fig. 1a, está todo a um mesmo potencial e <u>E=0 no seu interior</u>. Nenhuma força elétrica resultante atua sobre os elétrons de condução disponíveis, logo não há nenhuma corrente elétrica. A inserção de uma bateria no circuito (Fig. 1b) gera um campo elétrico dentro do condutor. Este campo faz com que as cargas elétricas se movam ordenadamente, constituindo assim uma <u>corrente elétrica</u>.

"Por definição, o sentido da corrente elétrica é aquele em que as cargas positivas se moveriam quando aplicado uma diferença de potencial no condutor"

Corrente elétrica

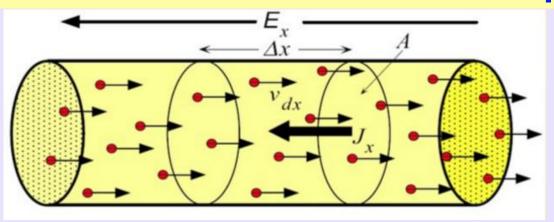
Corrente ⇒ é igual a taxa de passagem da **Elétrica** carga através da área A.

 $\triangle q \rightarrow \text{quantidade de carga que passa pela área A.}$


$$\Rightarrow i = \frac{\triangle q}{\triangle t} \rightarrow \text{corrente média}$$

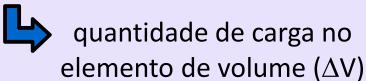
A carga q que atravessa um plano em um intervalo de tempo Δt pode ser determinada através de:

$$i = \frac{dq}{dt} \Rightarrow q = \int_{t}^{t+\triangle t} i(t)dt$$


Unidade de corrente: 1 ampère (A) = 1 C/s

Uma corrente i estacionária tem a mesma intensidade através das seções aa', bb' e cc'.

Corrente e o movimento das partículas carregadas



Volume do elemento condutor $\rightarrow A \triangle x$

Nº de portadores de carga móveis por unidade de volume $\rightarrow n$ (Cu $\approx 10^{29}$ e/m³)

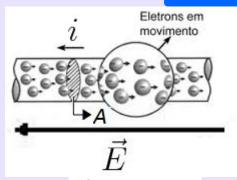
 \Rightarrow Nº de portadores de carga no volume do condutor $\rightarrow nA\triangle x$

 $\Delta q = n^{o}$ de carga \times carga por partícula $= (nA \triangle x)q$

$$\triangle x = v_d \triangle t \Rightarrow \triangle q = (nAv_d \triangle t)q$$

$$\Rightarrow i = \frac{\triangle q}{\triangle t} = nqv_dA$$

 $v_d \rightarrow$ velocidade de migração dos elétrons = velocidade média



Resistência e lei de Ohm

"não pode haver campo no interior de um condutor"

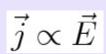
O campo elétrico no interior do condutor provoca o deslocamento de cargas.

$$|j| = \frac{i}{A} = nqv_d \quad \left(\frac{A}{m^2}\right)$$
 densidade de corrente

 $ec{j} = nqec{v_d}$ ightarrow a densidade de corrente é uma grandeza vetorial

Só é válida se a densidade de corrente for uniforme e a superfície for perpendicular à direção da corrente

$$i = \int ec{j}.dec{A}
ightarrow ext{relação entre} \ i \ e \ ec{j}$$


Resistência e lei de Ohm

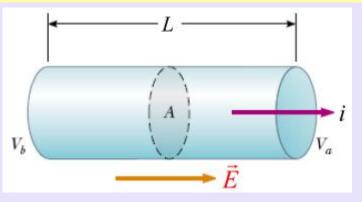
Em muitos materiais a densidade de corrente é proporcional ao campo elétrico:

Os materiais que obedecem a relação acima seguem a lei de Ohm.

"A lei de Ohm afirma que em muitos materiais, a razão entre a densidade de corrente e o campo elétrico é uma constante, σ , que independe do campo elétrico que provoca a corrente"

materiais $\vec{j} \propto \vec{E}$ obedecem a lei de Ohm lei de Ohm

materiais


 $ightarrow ec{j}$ não é $ec{E}$ ightarrow
ightarrow não obedecen lei de Ohm

não obedecem a

Forma prática da lei de Ohm

Campo elétrico uniforme

$$\leftarrow \triangle V = V_b - V_a$$

$$\Rightarrow \triangle V = E.L$$

$$\Rightarrow |\vec{j}| = \sigma |\vec{E}| = \sigma \frac{\triangle V}{L}$$

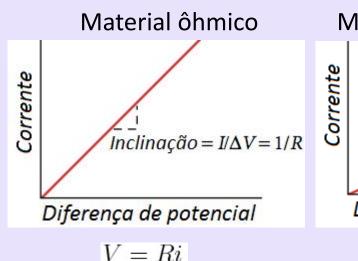
$$m\acute{a}s,\ como\ |\vec{j}| = \frac{\imath}{A}$$

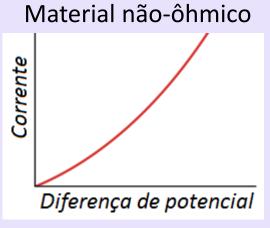
$$\Rightarrow \triangle V = \frac{L}{\sigma} |\vec{j}| = \underbrace{\left(\frac{L}{\sigma A}\right)}_{i} i$$

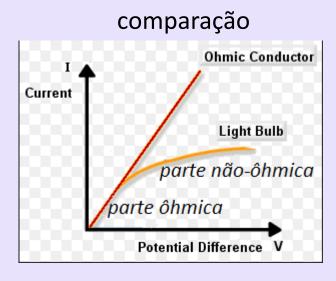
Resistência, R, do condutor

$$\Rightarrow R = \frac{L}{\sigma^A} = \frac{\triangle V}{i} \Rightarrow V = Ri$$

Unidade de resistência no SI: 1 Ohm $(\Omega) = 1$ Volt(V) / 1 Ampère(A)




Resistividade


Definição: resistividade
$$ightarrow
ho \equiv rac{1}{\sigma}$$

$$\Rightarrow R = \rho \frac{L}{A}; \ \rho \to Ohm.metro(\Omega.m)$$

Note que a resistência depende tanto da resistividade quanto da forma de um corpo. Como a resistividade é própria do material, dois fios de cobre terão a mesma resistividade, mas poderão apresentar valores de resistência muito diferentes, dependendo de suas dimensões

Resistividade de diferentes condutores

$$\rightarrow \rho(T)$$

Resistividade do condutor $\xrightarrow{} \rho(T)$ aumenta com a temperatura

$$\rho = \rho_0 \left[1 + \alpha \left(T - T_0 \right) \right]$$

variação aproximadamente linear com T

 $\rho_0 \rightarrow$ resistividade a uma temperatura de referência T₀ (em 0 C)

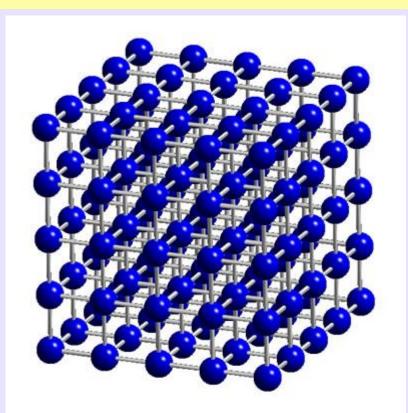
 $\alpha \rightarrow$ coeficiente de temperatura da resistividade

$$\alpha = \frac{1}{\rho_0} \frac{(\rho - \rho_0)}{(T - T_0)} = \frac{1}{\rho_0} \frac{\triangle \rho}{\triangle T}$$

$$R = \rho \frac{L}{A} \Rightarrow R = R_0 \left[1 + \alpha \left(T - T_0 \right) \right]$$
 variação da resistência com a temperatura

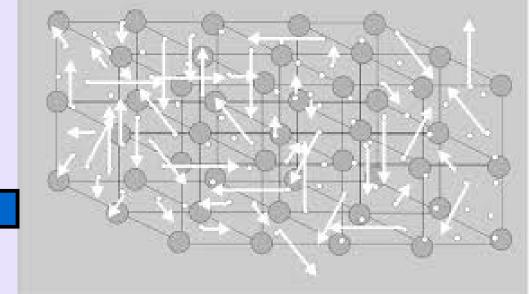
Resistividade e coeficiente de temperatura

Resistividades e coeficientes de temperatura da resistividade para vários materiais

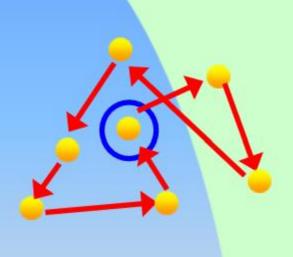

Material	a Resistividade[Ωm]	Coeficiente de b Temperatura $\alpha[(C)^{-1}]$	
Prata	1.59×10^{-8}	3.8×10^{-3}	
Cobre	1.7×10^{-8}	3.9×10^{-3}	
Ouro	2.44×10^{-8}	3.4×10^{-3}	
Alumínio m	2.82×10^{-8}	3.9×10^{-3}	
Tungstenio	5.6×10^{-8}	4.5×10^{-3}	
Ferro	10×10^{-8}	5.0×10^{-3}	
Platina	11×10^{-8}	3.92×10^{-3}	
Chumbo	22×10^{-8}	3.9×10^{-3}	
Nicromon ^c	1.50×10^{-6}	0.4×10^{-3}	
Carbono	3.5×10^{-5}	-0.5×10^{-3}	
Germanio	0.46	-48×10^{-3}	
Silicio	640	-75×10^{-3}	
Vidro	10^{10} to 10^{14}		
Borracha	~1013		
Enxofre	1015		
Quartzo fundido	75×10^{16}		

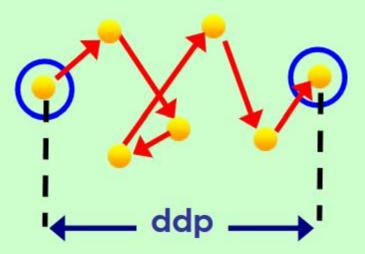

a Todos os valores a 20 °C

^CLiga de Ni e Cr


b Veja a seção 5.2.1

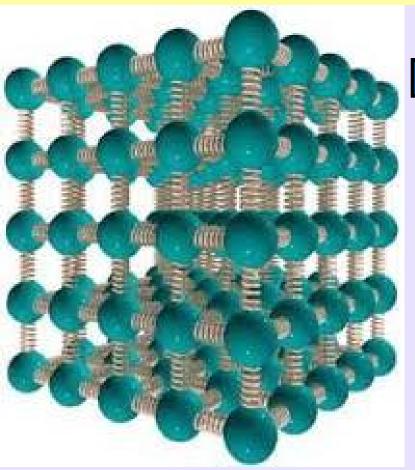
Modelo de um metal: rede regular tridimensional de íons


Visão clássica dos elétrons livres se movendo aleatoriamente no interior de um metal



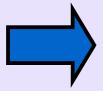
Corrente de deriva ou condução

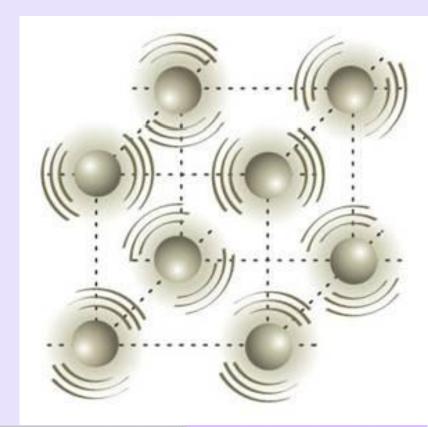
Devida a uma diferença de potencial

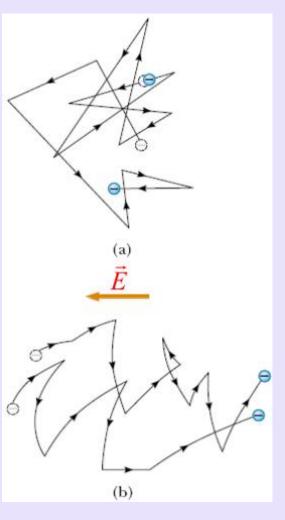


sem ddp: movimento aleatório de média nula

com ddp: movimento aleatório com média não nula






Modelo de um metal: rede regular tridimensional de íons que vibram

Rede vibrando devido aos choques com os elétrons livres do metal.

Um elétron de massa m_e colocado num campo sofre uma aceleração \vec{r}

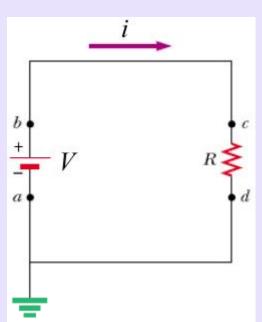
$$\vec{a} = \frac{\vec{F}}{m_e} = \frac{e\vec{E}}{m_e}$$

A velocidade de deriva pode ser escrita como:

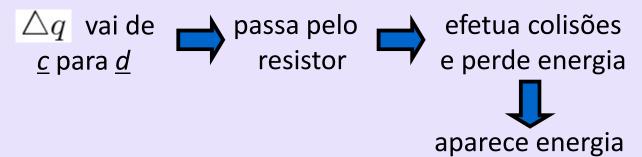
$$\vec{v_d} = \vec{a}\tau = \frac{e\vec{E}}{m_e}\tau$$

onde τ é o tempo médio entre colisões. Portanto,

$$\vec{j} = ne\vec{v_d} = \frac{ne^2\tau}{m_e}\vec{E}$$


de acordo com este modelo clássico,

$$\frac{\vec{j}}{\vec{E}} = \frac{ne^2\tau}{m_e} = \sigma \Rightarrow \rho = \frac{1}{\sigma} = \frac{m_e}{ne^2\tau}$$


não dependem de E, que é a característica de um condutor ôhmico.

Energia elétrica e Potência elétrica

$$\Delta q$$
 vai de \underline{a} para \underline{b} a energia potencial elétrica aumenta de $\Delta U = V \Delta q$

Taxa com que se perde a energia potencial

$$-\frac{\Delta U}{\Delta t} = -\frac{\Delta q}{\Delta t} V = -iV$$

térmica

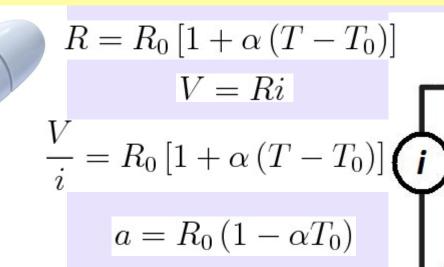
A taxa de dissipação da energia é igual a potência, P, dissipada:

$$\Rightarrow P = iV$$

A relação acima, pode ser usada para determinar a potência de qualquer dispositivo percorrido por uma corrente *i*.

Energia elétrica e Potência elétrica

$$como\ V = Ri$$


$$\Rightarrow P = i^2 R = \frac{V^2}{R}$$
potência dissipada por um resistor

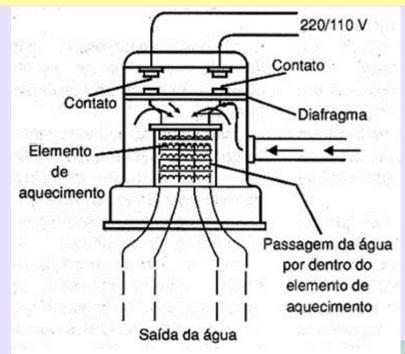
Unidade de potência 1 watt (w) = 1 Joule/1 segundo =1 J/s

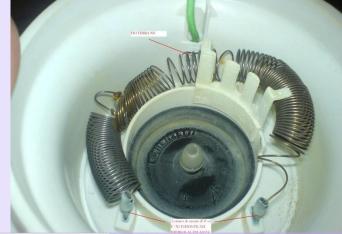
Efeito Joule dissipação de potência (energia) na forma de calor em um condutor de resistência R.

Aplicação: termômetro digital

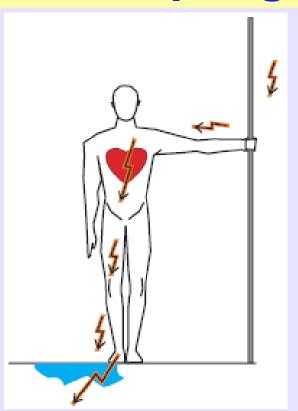
$$V = V_0 \rightarrow voltagem \ da \ pilha$$

 $b = \alpha R_0$

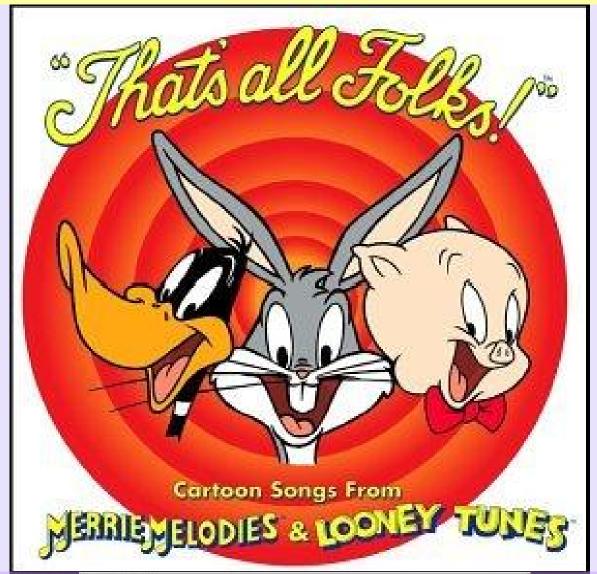

$$\Rightarrow \frac{V_0}{i} = a + bT$$


$$logo \Rightarrow T = \frac{1}{b} \left(\frac{V_0}{i} - a \right)$$

Aplicação:chuveiro elétrico



Os perigos de um choque elétrico



Resistência do corpo humano Molhado \cong 300-500 Ω Seco \cong $5 \times 10^5 \ \Omega$

NTENSIDADE	EFEITO	CAUSAS	
1 a 3 mA	Percepção	A passagem da corrente provoca formigamento. Não existe perigo.	151
3 a 10 mA	Eletrização	A passagem da corrente provoca movimentos.	
10 mA	Tetanização	A passagem da corrente provoca contrações musculares, agarramento ou repulsão.	剩
25 mA	Parada Respiratória	A corrente atravessa o cérebro.	
25 a 30 mA	Asfixia	A corrente atravessa o tórax.	ele
60 a 75 mA	Fibrilação Ventricular	A corrente atravessa o coração.	(

FIM

