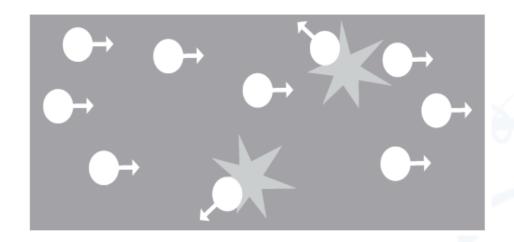
FINAL DA AULA #11

RESISTÊNCIA ELÉTRICA

• Na presença de um campo elétrico \vec{E} os portadores de carga são acelerados por uma força $\vec{F}=q\vec{E}$.

$$\overrightarrow{F} = q\vec{E}$$

 Resistência elétrica ocorre devido a espalhamentos eletrônicos com impurezas e/ou irregularidades no material; quanto mais são espalhados maior a resistência



MODELO

• Imediatamente depois de uma colisão, a direção e sentido da velocidade do portador é aleatória.

$$\left\langle \vec{v}_j^{\,dc} \right\rangle = 0$$

• Imediatamente antes de uma colisão o portador terá adquirido uma quantidade de movimento $\Delta \vec{p} = q \vec{E} \Delta t$

$$m\vec{v}_j^{ac} - m\vec{v}_j^{dc} = q\vec{E}t_j$$

tempo entre colisões sucessivas

 \Rightarrow

$$m\langle \vec{v} \rangle = \frac{1}{N} \sum_{j} \vec{v}_{j} = qE\left(\frac{1}{N} \sum_{j} t_{j}\right)$$

velocidade média adquirida pelos portadores em função do campo aplicado

tempo médio entre colisões sucessivas

MODELO

Sendo assim,

$$\langle \vec{v} \rangle = \frac{q\tau}{m} \vec{E}$$

velocidade média é proporcional ao campo aplicado

No entanto,

$$\vec{j} = nq \langle \vec{v} \rangle \qquad \Rightarrow \qquad \vec{j} = \left(\frac{nq^2\tau}{m}\right) \vec{E}$$

Mas,

$$\vec{j} = \sigma \vec{E} \quad \Rightarrow \quad \sigma = \frac{nq^2\tau}{m}$$

condutividade é proporcional ao tempo médio entre colisões

ESTIMATIVA

$$q = -e$$

Nos metais,
$$q=-e\;; \quad m=m_e$$

massa eletrônica

carga eletrônica

Medindo-se a resistividade
$$ho=rac{1}{\sigma}=rac{m_e}{ne^2 au}$$
 podemos estimar au

e o livre caminho médio ℓ (espaço percorrido em média entre duas colisões)

$$\ell = v_F \tau$$

velocidade de Fermi

Cu (T~300K)
$$\ell \approx 10^2 a_0$$

espaçamento atômico

RESISTORES

Resistores em série:

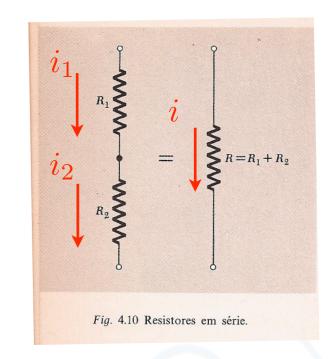
$$i_1 = i_2 = i$$
; $V = V_1 + V_2 = iR_1 + iR_2 = i(R_1 + R_2)$
 $V = R_{eq}i \implies R_{eq} = R_1 + R_2$

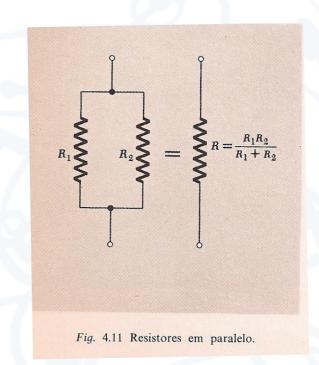
Resistores em paralelo:

$$V_1 = V_2 = V ; \quad i = i_1 + i_2 \implies$$

$$\frac{V}{R_{eq}} = \frac{V}{R_1} + \frac{V}{R_2} = V \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

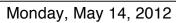
$$\Rightarrow \qquad \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$



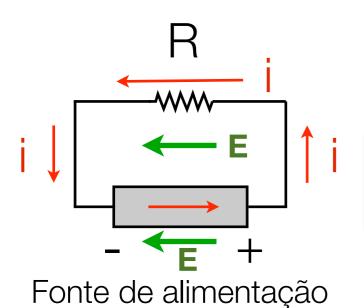


F.E.M. & CIRCUITOS

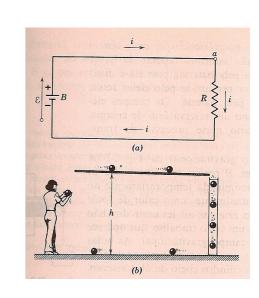
Aula # 12

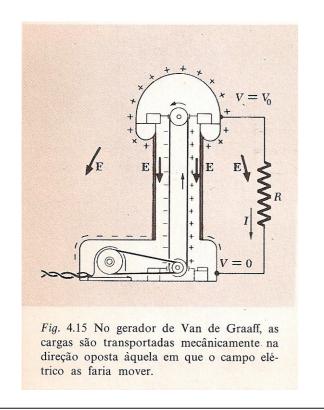


FORÇA ELETROMOTRIZ



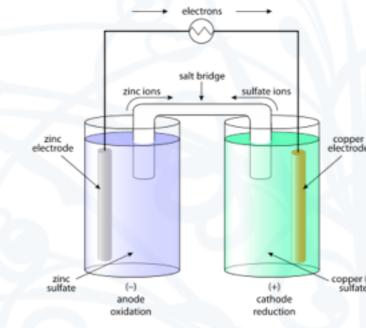
Note que dentro da fonte de alimentação a corrente flui na direção oposta ao campo





Painel Solar

Baterias



Daniell cell

FORÇA ELETROMOTRIZ

DEFINIÇÃO

Força eletromotriz: f.e.m.

$$\varepsilon = dW/dq$$

$$\varepsilon = -\int_2^1 \vec{E} \cdot d\vec{l} = V_1 - V_2$$

d.d.p. entre os pontos 1 e 2 em um circuito aberto

A d.d.p. entre os terminais de uma pilha de 1.5 V - medida diretamente com o voltímetro - é 1.5V

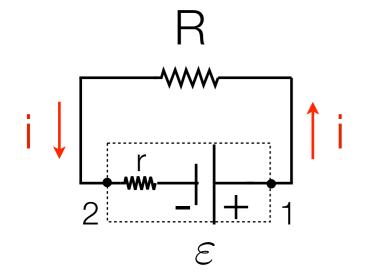
Símbolo:

$$\begin{array}{c|c} \varepsilon \\ 2 & \downarrow 1 \\ \bullet & \downarrow + \end{array}$$

Fonte de alimentação

FORÇA ELETROMOTRIZ

CIRCUITO



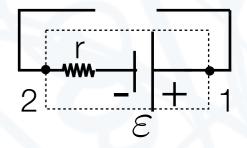
r - resistência interna da fonte de alimentação

$$i = \frac{\varepsilon}{R + r}$$

$$V = V_1 - V_2 = Ri = \frac{R}{R + r} \varepsilon < \varepsilon$$

$$\lim_{R\to\infty}$$

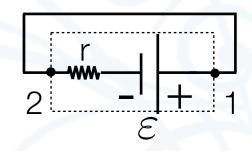
(circuito aberto) i o 0 & V o arepsilon



$$\lim_{R\to 0}$$

(curto circuito)

 $i \to i_{max} = \frac{\varepsilon}{r} \& V \to 0$



REGRAS DE KIRSHHOFF

CIRCUITO COM 1 MALHA

1. A soma de todas as variações de potencial ao longo de um circuito fechado é nula ($\oint \vec{E} \cdot d\vec{l} = 0$)

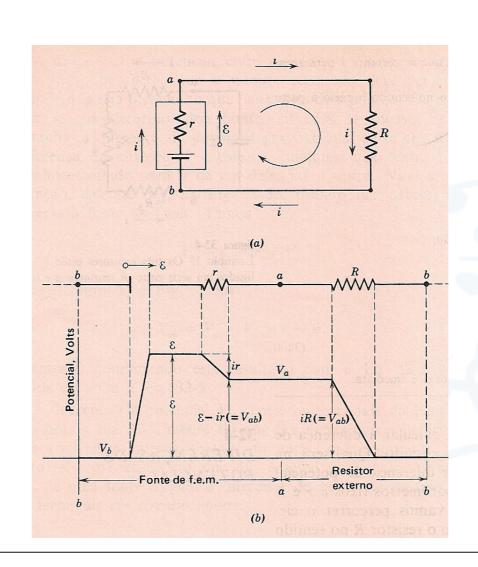
Escolhemos o sentido da corrente e o do percurso da malha

 Através de um resistor ôhmico percorrido no sentido da corrente há uma queda de potencial

$$\Delta V = Ri$$

• Através de fonte de f.e.m. percorrida no sentido da corrente há um **ganho** de potencial

$$\Delta V = \varepsilon$$



REGRAS DE KIRSHHOFF

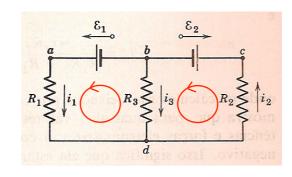
CIRCUITO COM MAIS DE 1 MALHA

2. Em um nó, a soma algébrica de todas as correntes deve ser nula (conservação de carga)

Escolhemos os sentidos das correntes e dos percursos das malhas

• No nó b ou d temos:

$$i_1 + i_3 - i_2 = 0 (1)$$



• Malha abd:

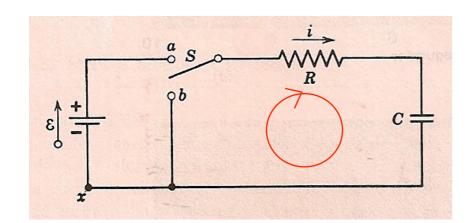
$$\varepsilon_1 - i_1 R_1 + i_3 R_3 = 0$$
 (2)

• Malha bcd:

$$-\varepsilon_2 - i_3 R_3 - i_2 R_2 = 0 \tag{3}$$

Esse sistema com três equações lineares e três incógnitas permite determinar, por exemplo, as três correntes.

ARREGANDO O CAPACITOR



Chave S conectada na posição (a)

Condições iniciais:

Em
$$t = 0$$
 $q(t = 0) = q_0 = 0$

Lei das malhas:
$$\varepsilon - Ri - \frac{q}{C} = 0$$
 Eq. (1)

q. (1)
$$q=q(t) \qquad i=\frac{dq}{dt}$$

Decorre que:
$$i(t=0) = i_0 = \frac{\varepsilon}{R}$$

Derivando a equação (1) em relação ao tempo : $R\frac{di}{dt} = -\frac{i}{C} \implies \frac{di}{i} = -\frac{dt}{RC}$

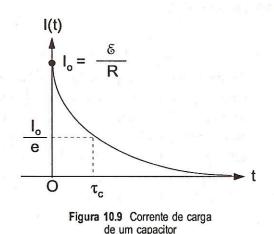
$$R\frac{di}{dt} = -\frac{i}{C} \implies \frac{di}{i} = -\frac{dt}{RC}$$

Definindo
$$au = RC$$
 $frac{di}{i} = -\frac{dt}{\tau} \Rightarrow \int_{i_0}^i \frac{di}{i} = -\int_0^t \frac{dt'}{\tau} \Rightarrow ln\left(\frac{i}{i_0}\right) = -\frac{t}{\tau}$

$$\Rightarrow \qquad i(t) = i_0 e^{-t/\tau} \qquad \text{quando} \qquad t = \tau \qquad i(\tau) = \frac{i_0}{e} \approx \frac{i_0}{3}$$

au = RC tempo caracterísitco

CARREGANDO O CAPACITOR



Carga no capacitor:

$$i = \frac{dq}{dt} \Rightarrow dq = idt \Rightarrow q(t) = \int_0^t i(t') dt'$$
$$i(t') = i_0 e^{-t'/\tau} \Rightarrow q(t) = -i_0 \tau e^{-t/\tau} \Big|_0^t$$

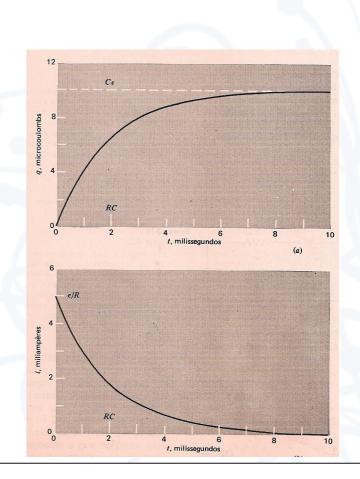
$$\Rightarrow q(t) = \varepsilon C \left(1 - e^{-t/\tau}\right)$$

$$q(t=0) = 0$$

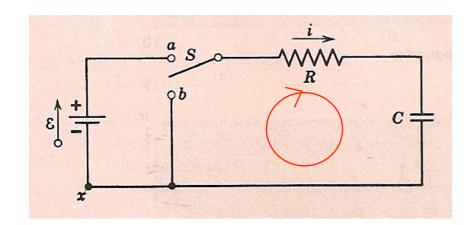
$$i(t=0) = \frac{\varepsilon}{R}$$

$$\lim_{t \to \infty} q(t) = \varepsilon C$$

$$\lim_{t \to \infty} i(t) = 0$$



ESCARREGANDO O CAPACITOR



Chave S conectada na posição (b)

Condições iniciais:

Em
$$t=0$$
 $q(t=0)=q_0=C\varepsilon$

Lei das malhas:
$$-Ri - \frac{q}{C} = 0$$
 Eq. (2)

$$q = q(t) i = \frac{dq}{dt}$$

Decorre que:
$$i(t=0) = i_0 = \frac{q_0}{RC} = -\frac{\varepsilon}{R}$$

Da equação (2):
$$R\frac{dq}{dt} = -\frac{q}{C} \quad \Rightarrow \quad \frac{dq}{q} = -\frac{dt}{RC}$$

Definindo
$$\tau = RC$$
 $\frac{dq}{q} = -\frac{dt}{\tau} \Rightarrow \int_{q_0}^q \frac{dq}{q} = -\int_0^t \frac{dt'}{\tau} \Rightarrow ln\left(\frac{q}{q_0}\right) = -\frac{t}{\tau}$

$$\Rightarrow ln\left(\frac{q}{q_0}\right) = -\frac{t}{\tau}$$

$$\Rightarrow$$
 $q(t) = q_0 e^{-t}$

$$\Rightarrow \qquad q(t) = q_0 \, e^{-t/\tau} \qquad \text{quando} \qquad \qquad t = \tau \qquad q(t) = \frac{q_0}{e} \approx \frac{q_0}{3}$$

au = RC tempo caracterísitco

DESCARREGANDO O CAPACITOR

Corrente no circuito: $i(t) = \frac{dq}{dt}$

$$i(t) = \frac{dq}{dt}$$

$$q(t) = q_0 e^{-t/\tau}$$

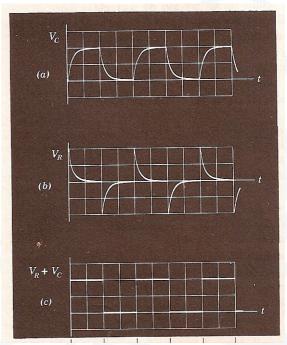
$$\Rightarrow i(t) = -\frac{q_0}{\tau} e^{-t/\tau}$$

Sinal negativo indica apenas que a corrente tem sentido oposto ao escolhido na figura

$$q(t=0) = q_0 \qquad \lim_{t \to \infty} q(t) = 0$$

$$i(t=0) = i_0 = -\frac{q_0}{\tau}$$
 $\lim_{t \to \infty} i(t) = 0$

Carga e descarga



CAMPO MAGNÉTICO

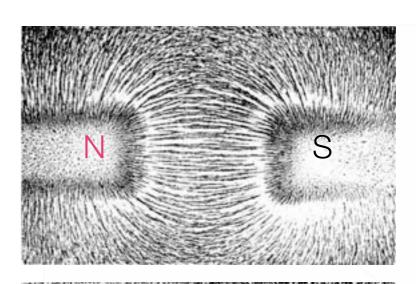
Aulas # 13/14

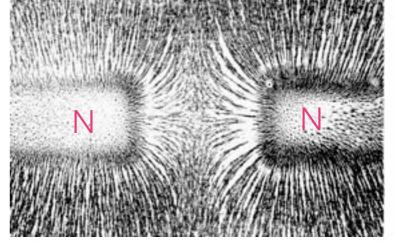
IMÃ E CAMPO MAGNÉTICO

Magnetita

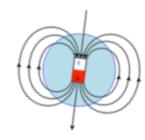
Proveniente de alguns lugares é um ímã natural, capaz de atrair partículas de Fe. Trata-se de um óxido de ferro Fe₃O₄

Imã Partido em 2: 2 ímãs

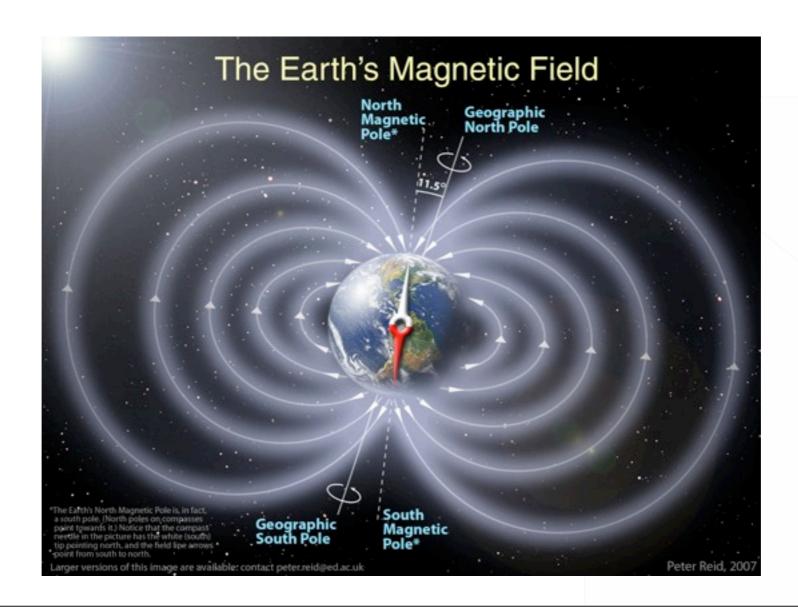




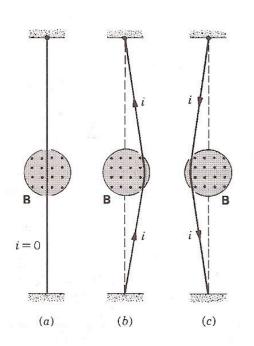
A TERRA É UM IMÃ



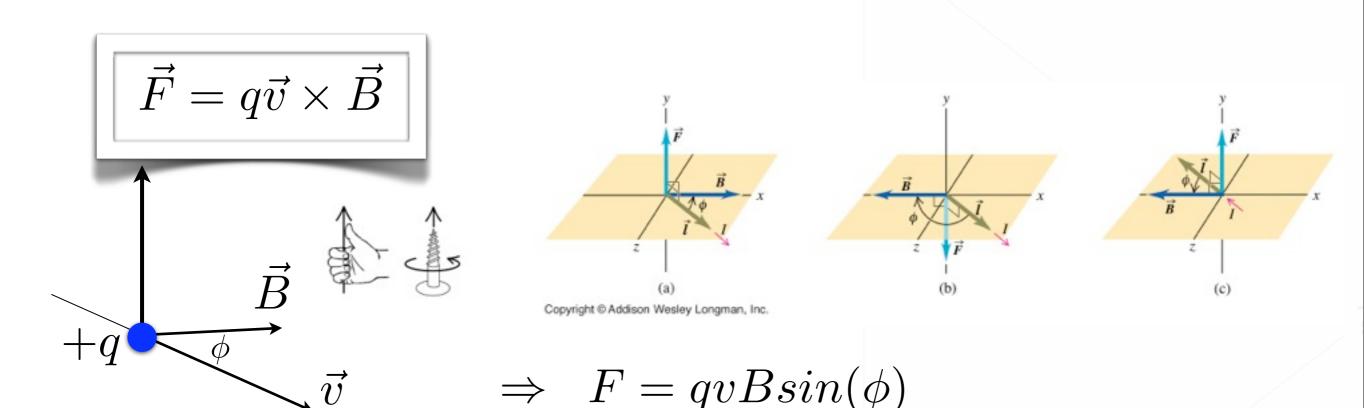
- Os polos magnéticos não coincidem com os polos geográficos.



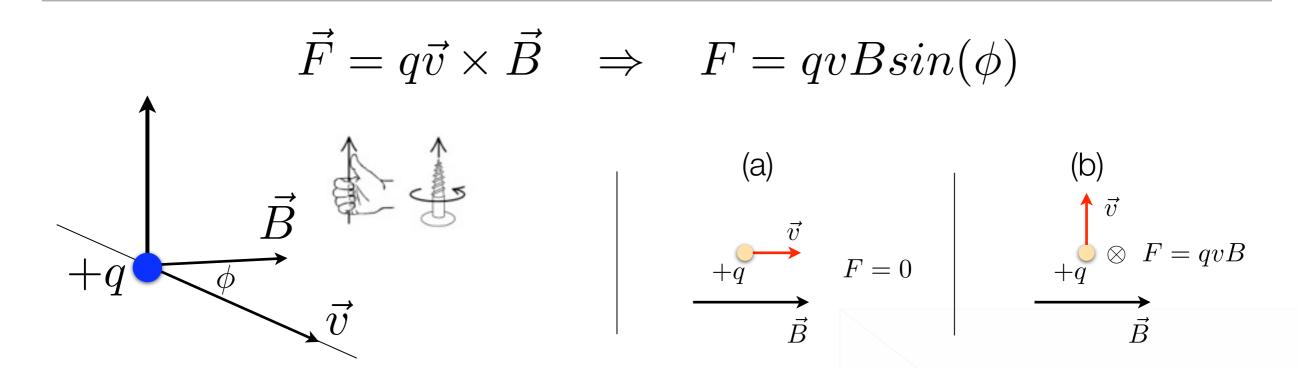
FORÇA SOBRE CARGAS EM MOVIMENTO



- A força depende do sentido e da intensidade da corrente, ou seja, da carga e da velocidade dos portadores.
- A força depende do sentido e da intensidade do campo



FORÇA SOBRE CARGAS EM MOVIMENTO



A força magnética sobre cargas em movimento, sendo perpendicular à velocidade, não trabalha.

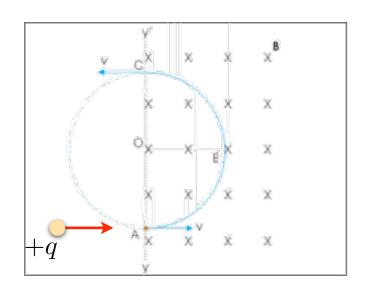
$$\begin{split} dW &= \vec{F} \cdot d\vec{\ell} & \vec{v} = \frac{d\vec{\ell}}{dt} \implies d\vec{\ell} = \vec{v}dt \\ \vec{F} \perp \vec{v} &\Rightarrow \vec{F} \perp d\vec{\ell} \implies dW = 0 \end{split}$$

Unidades: (SI) 1Tesla = 1 N/(C m/s); $1 \text{ T} = 10^4 \text{ Gauss}$

FORÇA SOBRE CARGAS EM MOVIMENTO

Consequentemente:
$$\Delta E_c = 0 \; \Rightarrow \; |\vec{v}| \;$$
 constante, ou seja, a força magnética

pode apenas alterar a direção da velocidade da partícula carregada.





$$F=qvB=rac{mv^2}{R} \quad \Rightarrow \quad R=rac{mv}{qB} \quad ext{O que acontece se a carga for negativa?}$$

Raio da órbita depende do momento da partícula, da sua carga e do valor do campo B

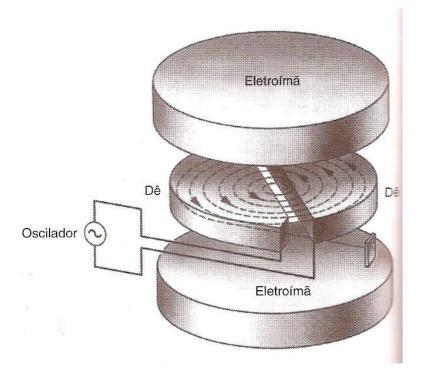
FREQUÊNCIA DE CICLOTRON

ACELERADOR CICLOTRON

$$\omega = \frac{v}{R} \quad \Rightarrow \quad \nu = \frac{\omega}{2\pi} = \frac{|q|B}{2\pi m}$$

Frequência de cíclotron

Para $v \ll c$, a frequência ν não depende de $v \Rightarrow$ elétrons lançados com velocidades menor, levam o mesmo tempo para percorrer sua trajetória circular de raio menor.



$$R = \frac{mv}{|q|B} \quad \Rightarrow \quad v = \frac{|q|BR}{m}$$

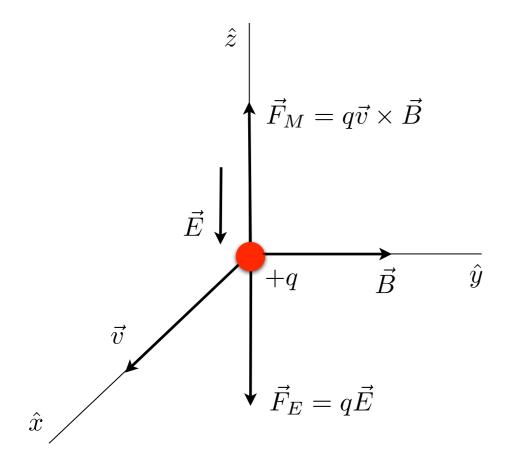
$$E_c = \frac{p^2}{2m} = \frac{q^2 B^2 R^2}{2m}$$
 maior E_c maior R

prótons acelerados até ~10MeV

 ${f eta}$ Na presença de um campo elétrico $ec{E}$ e de um campo magnético $ec{B}$

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

Suponha que \vec{E}, \vec{B} e \vec{v} são perpendiculares entre si (como ilustrado).

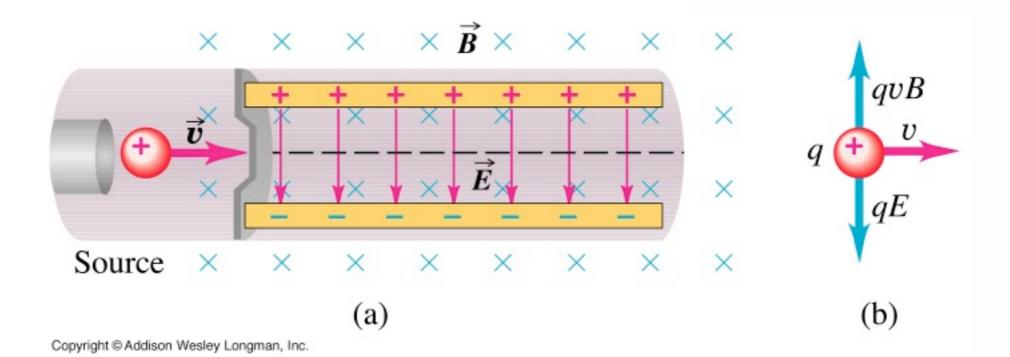


Nesse caso podemos ajustar $E \ e \ B$ de tal forma que $\vec{F}=0$. Dessa forma:

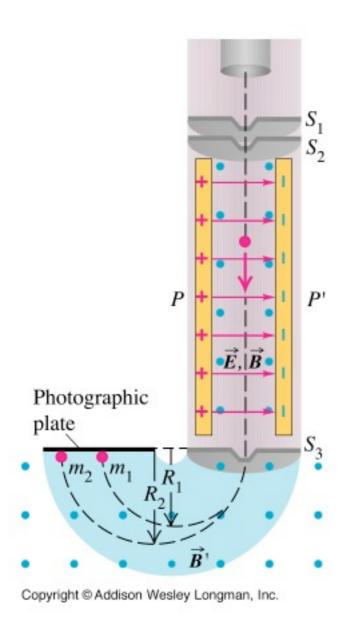
$$qE = qvB \quad \Rightarrow \boxed{v = \frac{E}{B}}$$

SELETOR DE VELOCIDADES

As partículas com essa velocidade não são defletidas nessa região. Podemos usar isso para como um dispositivo seletor de velocidade.



ESPECTRÔMETRO DE MASSA



Podemos combinar os dois resultados para construir um espectrômetro de massa. As partículas carregadas selecionadas com velocidades conhecidas

$$v = \frac{E}{B}$$

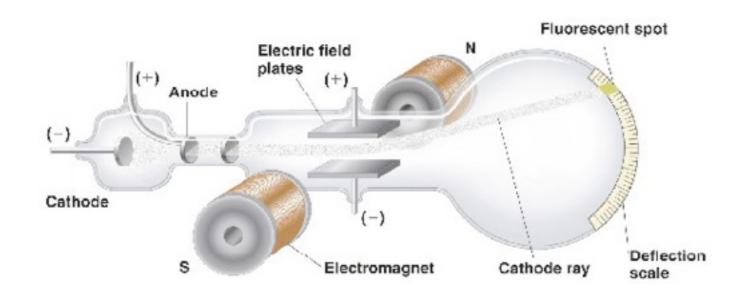
são injetadas em uma região com B apenas. Elas descrevem órbitas circulares de raio

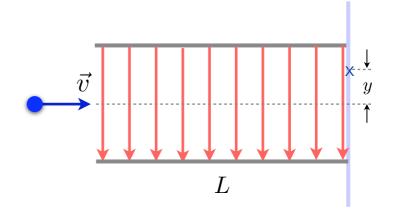
$$R = \frac{mv}{qB}$$

$$\Rightarrow R = \frac{mE}{qB^2}$$

$$\Rightarrow \frac{q}{m} = \frac{E}{RB^2}$$

RAZÃO CARGA MASSA - J. J. THOMSON





$$y = \frac{1}{2} \left(\frac{eE}{m} \right) t^2$$

Sem campo magnético:
$$y=\frac{1}{2}\left(\frac{eE}{m}\right)t^2$$
 $t=\frac{L}{v} \Rightarrow y=\frac{eEL^2}{2mv^2}$

Campo magnético é ajustado de modo a que o feixe não seja defletido:

$$v = \frac{E}{B}$$
 \Rightarrow $\left[\frac{e}{m} = \frac{2Ey}{B^2L^2}\right]$ $\approx 1.7 \times 10^{11} \ C/kg$

EFEITO HALL

CLÁSSICO



A força magnética cria uma d.d.p. transversa V_{ab} , cuja polaridade (sinal) depende da carga dos portadores de corrente. V_{ab} se estabiliza quando

$$q\vec{E} = q\vec{v} \times \vec{B} \quad \Rightarrow \quad E = vB$$

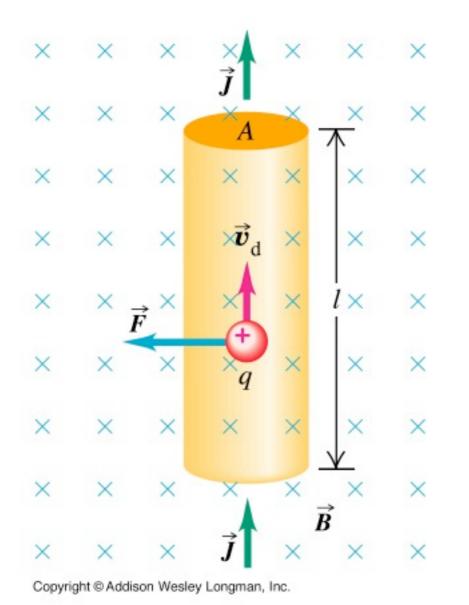
Considerando que a largura da tira é L e que sua espessura é ϵ , temos que

$$E = \frac{V}{L}; \quad v = \frac{j}{ne}; \quad j = \frac{i}{A} = \frac{i}{\epsilon L} \qquad \Rightarrow \boxed{n = \frac{iB}{e\epsilon V}}$$

Medindo V obtemos o sinal da carga e a densidade de portadores n

FORÇA MAGNÉTICA SOBRE UM CONDUTOR

PERCORRIDO POR UMA CORRENTE ELÉTRICA



A força magnética cria uma d.d.p. transversa Vab, cuja polaridade (sinal) depende da carga dos portadores de

$$ec{F}=Nq imesec{B}$$
 velocidade média dos portadores $N=nA\ell$; $ec{j}=nq$ \Rightarrow $ec{F}=nA\ell q\left(rac{ec{j}}{nq}
ight) imesec{B}=\ell Aec{j} imesec{B}$

Escrevendo $\vec{j}=j\hat{j}$, i=jA e definindo $\vec{\ell}=\ell\hat{j}$ obtemos:

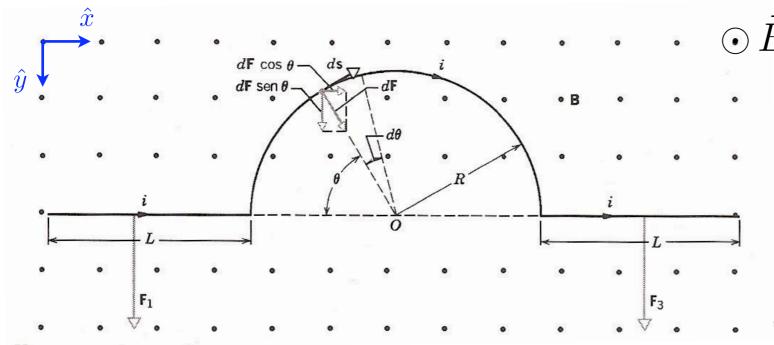
$$ec{F}=iec{\ell} imesec{B}$$
 ou, infinitesimalmente, $dec{F}=idec{\ell} imesec{B}$

$$d\vec{F} = id\vec{\ell} \times \vec{B}$$

 $d\ell$ ao longo do condutor e na direção e sentido de \hat{j}

FORÇA MAGNÉTICA SOBRE UM CONDUTOR

PERCORRIDO POR UMA CORRENTE ELÉTRICA



$$F_1 = F_3 = iLB$$

$$dF_2^x = dFcos(\theta)$$

$$dF_2^y = dFsin(\theta)$$

$$F_2^x = \int_0^\pi dF_2^x = 0$$
 Consequentemente,

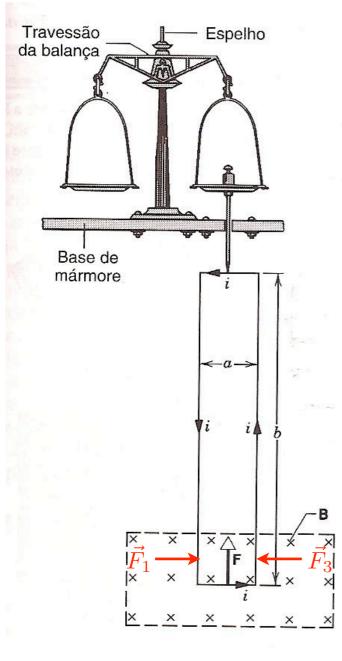
$$F_2^y = \int_0^\pi dF_2^y = \int_0^\pi dF sin(\theta) = \int_0^\pi id\ell B sin(\theta) = \int_0^\pi iR d\theta B sin(\theta) \Rightarrow$$

$$F_2^y = iRB \int_0^{\pi} d\theta sin(\theta) = 2iRB$$
 Consequentemente,

$$F = F_y = F_1 + F_2^y + F_3 = 2iLB + 2iBR = 2iB(L+R)$$

FORÇA MAGNÉTICA SOBRE UM CONDUTOR

PERCORRIDO POR UMA CORRENTE ELÉTRICA



$$\hat{y} \stackrel{\hat{y}}{\longrightarrow} \hat{x}$$

$$\vec{F}_1 = -\vec{F}_3$$

$$\vec{F} = i\vec{\ell} \times \vec{B} \quad \Rightarrow \quad F = iaB$$

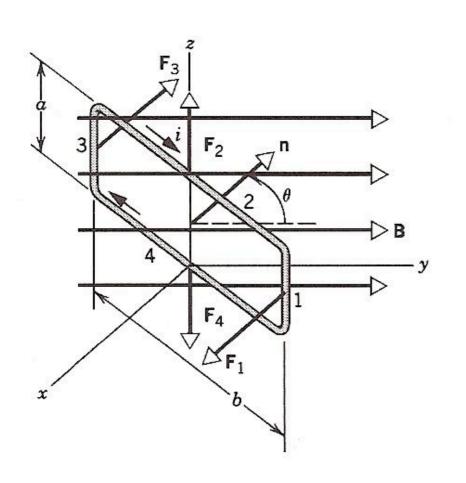
A bobina é composta por 9 fios, consequentemente,

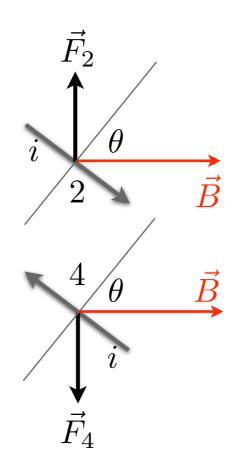
$$\vec{F} = 9iaB\hat{y}$$

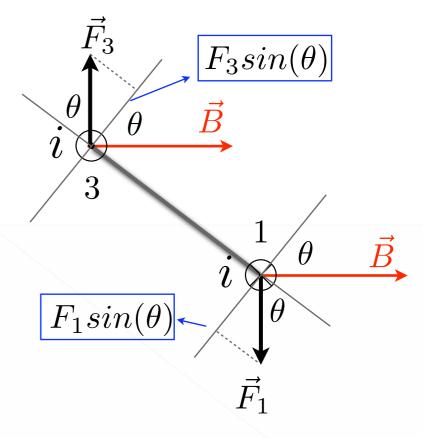
$$mg = F_T = 9iaB \quad \Rightarrow \quad B = \frac{mg}{9ia}$$

GALVANÔMETRO

Vista de cima







$$F_2 = F_4 = ibBcos(\theta); \ F_1 = F_3 = iaB \ \sum_{i=1,4} \vec{F_i} = 0$$

$$\sum_{i=1,4} \vec{F}_i = 0$$

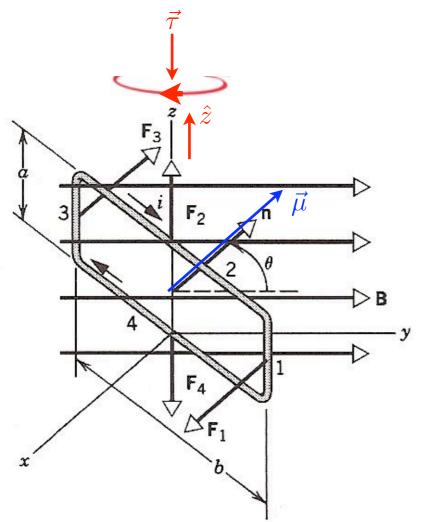
Entretanto,

 \vec{F}_1 e \vec{F}_3 causam torque, e a espira gira em torno do eixo z: $|\vec{\tau}=-iabBsin(\theta)\,\hat{z}|$

$$\vec{\tau} = -iabBsin(\theta)\,\hat{z}$$

 $ec{F}_2$ e $ec{F}_4$ não causam torque.

GALVANÔMETRO



$$\vec{\tau} = -iabBsin(\theta)\,\hat{z}$$

Definindo $\vec{A} = A\hat{n}$ onde A = ab

$$\vec{\mu} = iA\hat{n} \quad \Rightarrow \quad \vec{\tau} = \vec{\mu} \times \vec{B}$$

 $ec{\mu}$ - momento de dipolo magnético da espira

O torque tende a alinhar o dipolo $\, \vec{\mu} \,$ na direção do campo $\, \vec{B} \,$

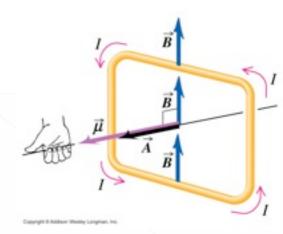
ENERGIA POTENCIAL

$$dW = \tau d\theta = \mu B sin(\theta) d\theta$$
$$\Delta U = \int \mu B sin(\theta) d\theta$$

Escolha de origem:
$$U\left(\frac{\pi}{2}\right) = 0$$

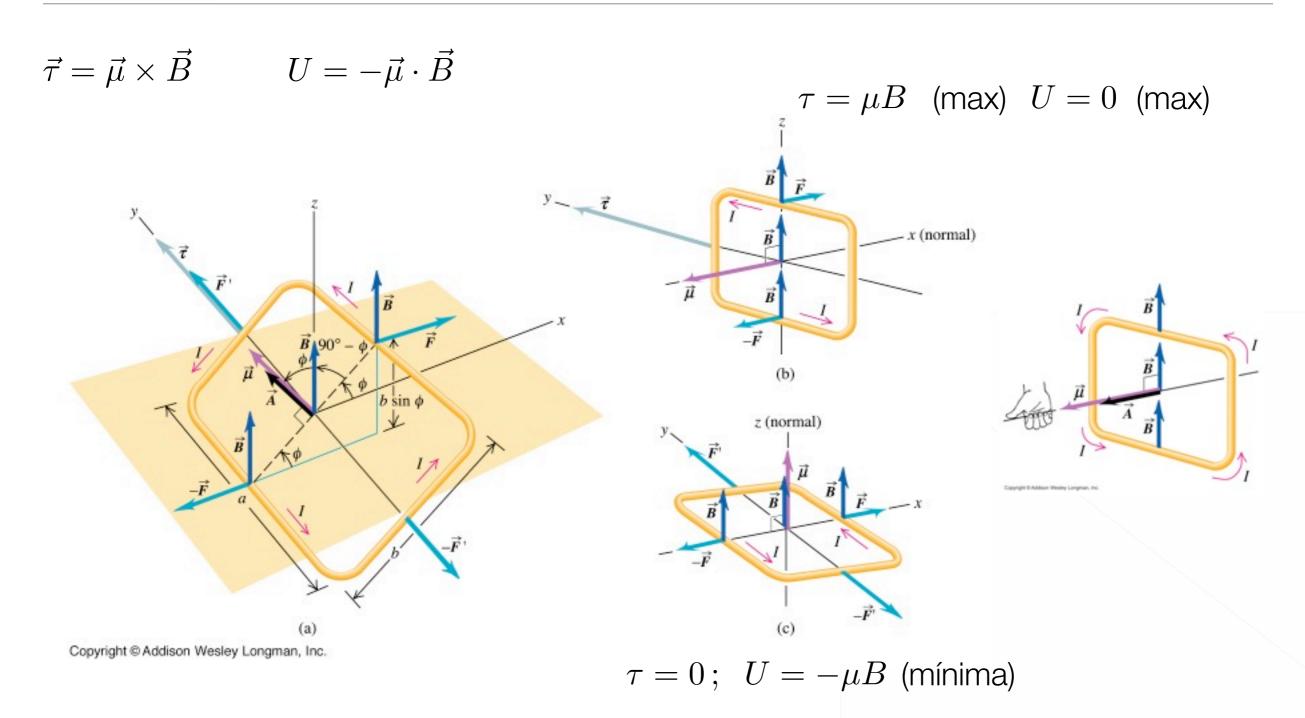
$$U(\theta) - U\left(\frac{\pi}{2}\right) = \int_{\frac{\pi}{2}}^{\theta} \mu B sin(\theta') d\theta' \quad \Rightarrow \quad U(\theta) = -\mu B cos(\theta)$$

$$U = -\vec{\mu} \cdot \vec{B}$$



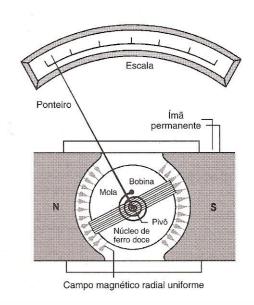
$$U(\theta) = -\mu B cos(\theta)$$

GALVANÔMETRO

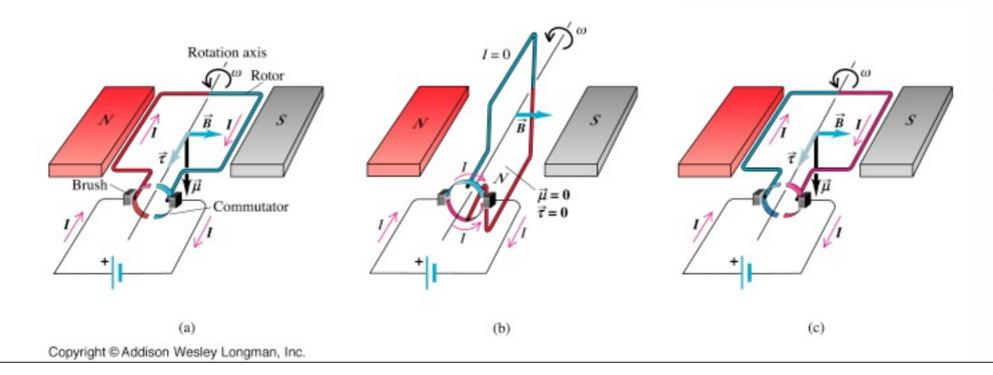


GALVANÔMETRO E MOTOR ELÉTRICO

Galvanômetro: ao passar corrente na bobina, o torque causado pelo campo magnético gira a bobina e, portanto, o ponteiro.



A direção da corrente deve ser revertida no tempo certo para que ocorra a rotação continuamente na mesma direção

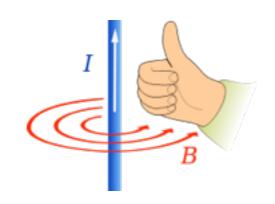


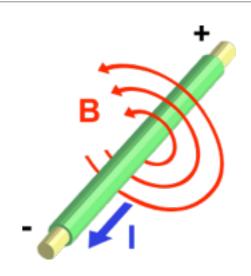
LEI DE AMPÈRE

Aula # 15

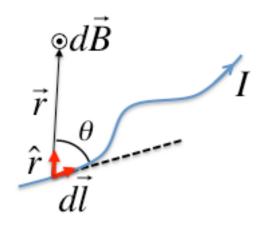
BIOT-SAVART

Carga em movimento gera campo magnético





 $^{ ext{@}}$ Campo magnético produzido por um elemento de corrente em um ponto $ec{r}$



$$d\vec{B} = \left(\frac{\mu_0}{4\pi}\right) \frac{id\vec{\ell} \times \vec{r}}{r^3} = \left(\frac{\mu_0}{4\pi}\right) \frac{id\ell sin(\theta)}{r^2}$$

$$\mu_0 = 4\pi \times 10^{-7} \, Tm/A$$

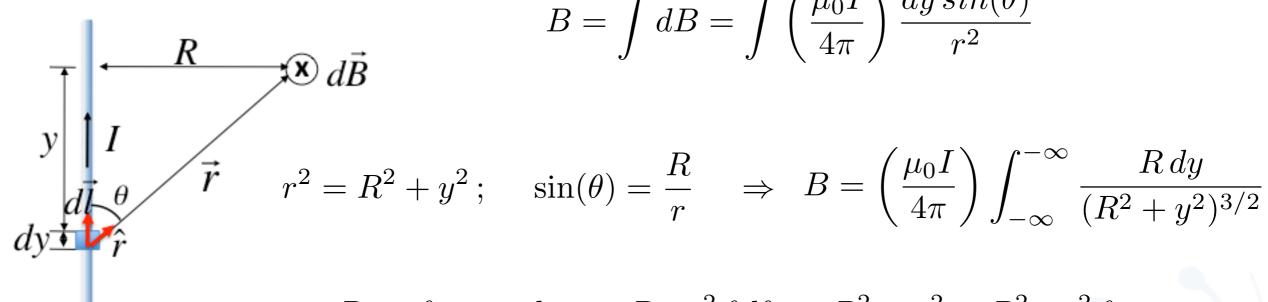
permeabilidade magnética do vácuo

$$\vec{B} = \int d\vec{B} = \left(\frac{\mu_0}{4\pi}\right) \int \frac{id\vec{\ell} \times \vec{r}}{r^3}$$

Soma feita sobre todos os elementos de corrente

APLICAÇÕES DE BIOT-SAVART

Fio longo retilíneo



$$B = \int dB = \int \left(\frac{\mu_0 I}{4\pi}\right) \frac{dy \sin(\theta)}{r^2}$$

$$\sin(\theta) = \frac{R}{r} \quad \Rightarrow \quad B = \left(\frac{\mu_0 I}{4\pi}\right) \int_{-\infty}^{-\infty} \frac{R \, dy}{(R^2 + y^2)^{3/2}}$$

$$y = R \cot \theta \implies dy = -R \csc^2 \theta d\theta; \quad R^2 + y^2 = R^2 \csc^2 \theta \implies$$

$$B = -\left(\frac{\mu_0 I}{4\pi R}\right) \int \frac{d\theta}{\csc \theta} = -\left(\frac{\mu_0 I}{4\pi R}\right) \int \sin \theta d\theta = \left(\frac{\mu_0 I}{4\pi R}\right) \cos \theta = \left(\frac{\mu_0 I}{4\pi R}\right) \left.\frac{y}{(y^2 + R^2)^{1/2}}\right|_{-\infty}^{+\infty}$$

$$\Rightarrow B = \left(\frac{\mu_0 I}{2\pi R}\right)$$

APLICAÇÕES DE BIOT-SAVART

Prio finito de comprimento L - Ponto P situado sobre a bissetriz do fio

$$\begin{array}{c|c} \hline \uparrow \\ \downarrow \\ \hline \uparrow \\ L/2 \\ \hline \downarrow \\ I \end{array} \longrightarrow \otimes d\vec{B} \qquad B = \left(\frac{\mu_0 I}{4\pi R}\right) \left. \frac{y}{(y^2 + R^2)^{1/2}} \right|_{-L/2}^{+L/2} = \frac{2L}{(L^2 + 4R^2)^{1/2}}$$

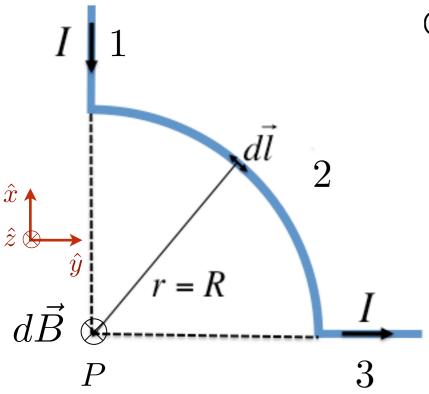
Ponto P situado sobre um eixo perpendicular ao fio passando pelo topo do fio

$$\begin{array}{c|c} R \\ \downarrow \\ \downarrow \\ L/2 \\ \downarrow \\ I \end{array}$$

$$B = \left(\frac{\mu_0 I}{4\pi R} \right) \left. \frac{y}{(y^2 + R^2)^{1/2}} \right|_{-L}^0 = \frac{L}{(L^2 + R^2)^{1/2}}$$

APLICAÇÕES DE BIOT-SAVART

Campo B no ponto P



Contribuições devido aos trechos 1e 3 são nulas pois $d\vec{\ell}$ e \vec{r} são paralelos: $d\vec{B}_1 = d\vec{B}_3 = 0 \ (\vec{r} \parallel \vec{B})$

$$d\vec{B} = \left(\frac{\mu_0}{4\pi}\right) \frac{id\vec{\ell} \times \vec{r}}{r^3} = \left(\frac{\mu_0}{4\pi}\right) \frac{id\ell sin(\theta)}{r^2}$$

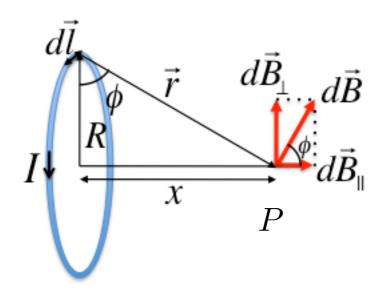
$$d\vec{B}_3 = \left(\frac{\mu_0}{4\pi}\right) \frac{Id\ell}{R^2} \,\hat{z} \,; \quad d\ell = Rd\theta \quad \Rightarrow$$

$$B_3 = \int dB_3 = \int \left(\frac{\mu_0 I}{4\pi}\right) \frac{R d\theta}{R^2} = \left(\frac{\mu_0 I}{4\pi}\right) \frac{\pi/2}{R} = \frac{\mu_0 I}{8R} \implies$$

$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_3 = \frac{\mu_0 I}{8R} \,\hat{z}$$

APLICAÇÕES DE BIOT-SAVART: ESPIRA CIRCULAR

Campo B no ponto P



$$\vec{B}_{\perp} = \int d\vec{B}_{\perp} = 0$$

$$d\vec{B} = \left(\frac{\mu_0}{4\pi}\right) \frac{id\vec{\ell} \times \vec{r}}{r^3} \quad \Rightarrow \quad dB = \left(\frac{\mu_0}{4\pi}\right) \frac{id\ell \sin \theta}{r^2}$$

$$\vec{d\ell} \perp \vec{r} \Rightarrow dB = \left(\frac{\mu_0}{4\pi}\right) \frac{Id\ell}{r^2}$$

$$dB_{\parallel} = dB\cos\phi; \quad dB_{\perp} = dB\sin\phi$$

$$\cos \phi = \frac{R}{r}; \quad \sin \phi = \frac{x}{R}$$

$$\vec{B}_{\parallel} = \int d\vec{B}_{\parallel} = \int dB_{\parallel} \, \hat{x}$$

$$B_{\parallel} = \int dB_{\parallel} = \int dB \cos \phi = \int \left(\frac{\mu_0}{4\pi}\right) \left(\frac{Id\ell}{r^2}\right) \left(\frac{R}{r}\right) = \left(\frac{\mu_0 IR}{4\pi r^3}\right) \int d\ell = \left(\frac{\mu_0 IR}{4\pi r^3}\right) 2\pi R = \frac{\mu_0 IR^2}{2r^3}$$

$$\vec{B} = \vec{B}_{\parallel} + \vec{B}_{\perp} = \frac{\mu_0 I R^2}{2 (x^2 + R^2)^{3/2}} \hat{x}$$