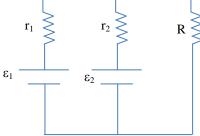


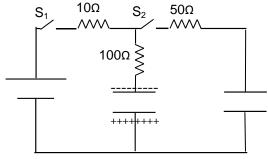
Física Teórica II


3ª Lista de Exercícios - 2º. semestre de 2014

- 1) a) Quantos elétrons fluem através de uma bateria que fornece uma corrente de 3,0 A por 12 s?
 - b) Se o fio ligado à bateria tem 1mm de raio, qual é a densidade de corrente no fio?
 - c) Se o fio é de cobre, qual é a velocidade de deriva dos elétrons?
- 2) Um estudante de física realizou um experimento em que a diferença de potencial V entre as extremidades de um fio reto longo foi variada. A corrente I no fio foi medida a cada valor da diferença de potencial com um amperímetro e os resultados da experiência são mostrados na tabela.

	V (volts) I (amperes)	
1	5.0	0.25
2	10.0	0.50
3	15.0	0.75
4	20.0	1.00
5	25.0	1.50
6	30.0	1.65
7	35.0	1.55
8	40.0	1.53

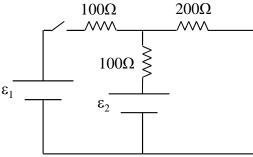
- a) Qual a resistência do fio em cada medida?
- c) Trace um gráfico VxI e IxR.
- b) O fio obedece à lei de ohm? Porque?
- d) Qual a potência gasta por efeito joule no fio em cada valor.
- e) Trace o gráfico PxI
- 3) Uma bateria com f.e.m. $\varepsilon_2 = 10 \text{ V}$ e resistência interna $r_2 = 1,0 \Omega$ está em paralelo com outra bateria, com f.e.m. $\varepsilon_1 = 12 \text{ V}$ e resistência interna $r_1 = 0,01 \Omega$, como mostra o circuito abaixo. No circuito existe outra resistência $R = 0,06 \Omega$ em paralela a estas baterias.
- a) Escreva a lei dos nós e a lei das malhas para o circuito, em função das correntes desconhecidas e dos dados do problema, R, ε_1 , ε_2 , r_1 e r_2 .
- b) Determine as correntes do circuito.
- c) Qual a potência gasta ou consumida por cada um dos elementos do circuito.

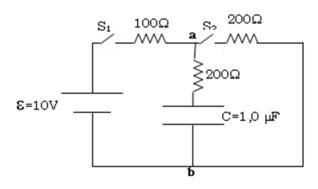


- 4) Qual é o número máximo de lâmpadas de 100W que você pode se conectar em paralelo, em um circuito caseiro de 120 V, sem desligar um disjuntor de 20A?
- 5) Um capacitor, inicialmente descarregado, de 10 µF é liga do a uma bateria de 10 V através de uma resistência R. O capacitor atinge uma diferença de potencial de 4 V em um período de 3 s depois que começou a carregar. Encontre o valor de R.

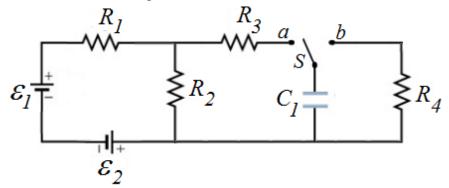
6) No circuito abaixo o capacitor C_1 esta carregado com uma carga de $10\mu C$ na polarização indicada e o C_2 está totalmente descarregado. S_1 e S_2 são fechadas simultaneamente, neste instante determine: a) as correntes do circuito

Num tempo muito longo após as chaves serem fechadas, determine:


- b) as correntes do circuito;
- c) as diferenças de potencial dos dois capacitores;
- d) a polarização de C₁. Justifique.


- 7) O circuito abaixo é montado para carregar uma bateria ε_2 que, inicialmente, possui uma diferença de potencial de 10V. No instante em que a chave é ligada:
- a) Calcule as correntes do circuito.
- b) Qual a potência fornecida pela bateria ε_1 para o circuito?

A bateria ε_2 é considerada carregada quando a corrente que passa por ela é nula, nestas condições:


- c) Qual a diferença de potencial de ε_2 ?
- d) Quais as outras correntes no circuito?

- 8) Uma fonte de fem 10V é colocada no circuito abaixo. O capacitor está inicialmente carregado com uma carga de $40~\mu C$. S_1 e S_2 se fecham simultaneamente.
- a) Ache as correntes no instante em que as chaves se fecham.
- b) No instante do item acima a fonte esta cedendo ou absorvendo energia? JUSTIFIQUE
- c) Ache a diferença de potencial entre a e b e no capacitor depois de um tempo muito longo após as chaves serem fechadas.

9) Na figura abaixo apresentamos um circuito formado por quatro resiastores (R_1 =5,0 Ω , R_2 =15 Ω , R_3 =15 Ω , R_4 =40 Ω), um capacitor (C_1 =5,0 μ F), duas fem (ϵ_1 =50V, ϵ_2 =10V) e uma chave comutadora S. Neste circuito, o capacitor está inicialmente descarregado com a chave aberta.

Num certo instante de tempo a chave é fechada em *a*:

- a) Quais são as correntes que circulam nas malhas da esquerda e da direita depois de um longo intervalo de tempo?
- b) Qual é a energia armazenada no capacitor quando o circuito entra em regime estacionário? Num certo instante de tempo a chave S é comutada para o ponto b e o capacitor começa a se descarregar através do resistor R_4 .
- c) Quanto tempo leva para que o capacitor perca ¾ da sua energia?

- 10) Um feixe de elétrons é acelerado por uma diferença de potencial V = 300V, sendo depois injetado em uma região com campo magnético uniforme B=1,46 mT. A espessura da região onde há campo é igual a d=2,5cm. O feixe bate em uma tela situada a uma distância D=7,5cm do ponto no qual entra na região com campo magnético não nulo.
- a) O feixe colide com a tela num ponto situado acima ou abaixo do ponto O? Justifique;
- b) Esboce a trajetória do feixe desde o ponto onde ele entra na região com campo até a sua colisão com a tela; c) Calcule o raio da trajetória descrita pelos elétrons na região onde existe o campo B; d) Calcule a distância entre o ponto no qual o feixe colide com a tela e o ponto O.

 Feixe

 O

d

D