Física Experimental 1 IF-UFF

Exame Escrito - modelo

2018/1

Nome: MODELO	NOTA:
Questões conceituais	
1. Defina a diferença entre precisão e exatidão (1.5 PONTO)	
 Qual o significado do desvio padrão e como este se relaciona com a incertécnica de medida? (1.5 PONTO) 	teza do instrumento ou

Física Experimental 1 IF-UFF

Exame Escrito - modelo

2018/1

Problemas

- **1.** Um disco sólido, de 54,8±0,5 mm de diâmetro e 8,0±0,4 mm de altura, possui massa igual a 640±2 gramas.
 - a. determine a massa específica do material do qual é feito o disco (incluindo a incerteza) (1.0 PONTO)
 - b. determine o tipo de material com base na sua resposta anterior (item a) e na tabela de massas específicas (abaixo). Justique (1.0 PONTO)

material	massa específica (g/cm³)		
Aço inox	7,85		
Cobre	8,93		
Cobre recozido	8,80		
Estanho	7,29		
Ferro	7,87		
latão	8,40 - 8,50		

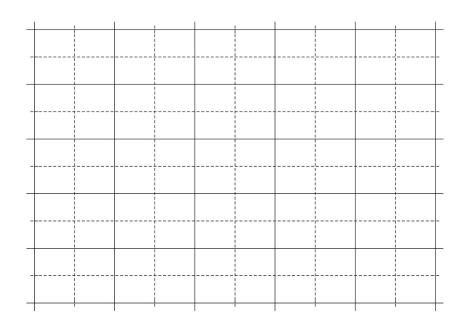
Espaço para contas do problema 1

Física Experimental 1 IF-UFF

Exame Escrito - modelo

2018/1

2. Com o arranjo experimental utilizado para o trilho de ar, um grupo de estudantes resolveu estudar o efeito no intervalo de tempo mensurado entre 2 fotossensores em função da massa adicionada ao carrinho. Os 2 fotossensores foram a 71,7±0,5 cm e 106,1±0,5 cm com relação à posição inicial do carrinho. Para tal estudo, o grupo possui, à disposição, massas de 10g e 50g sendo que o primeiro conjunto de dados foi tomado sem adicionar massa ao carrinho. Em seguida foram adicionadas 10g, 20, 40g e 80 g. Para cada caso, foram tomados 3 dados experimentais, resumidos na tabela abaixo (todos os intervalos de tempo estão em segundos):


Tabela 1. Dados experimentais do intervalo de tempo de queda para diferentes massas adicionadas ao carrinho. Todos os intervalos de tempo estão em segundos.

N	0 g	10 g	20 g	40 g	80 g
1	0,503	0,507	0,505	0,508	0,509
2	0,505	0,506	0,506	0,507	0,510
3	0,506	0,505	0,505	0,508	0,510

- a. Apenas utilizando argumentos, justifique se os intervalos de tempo devem depender da massa do carrinho. Seja claro nas suas argumentações (1.0 PONTO)
- b. Faça o gráfico intervalo de tempo x massa adicionada. Estime a melhor reta que ajusta os dados experimentais através do método do gráfico. Use o modelo abaixo (1.0 PONTO)
- c. O que é possível concluir a partir dos dados experimentais? (0,5 PONTO)

Exame Escrito - **modelo**

2018/1

3. Em um experimento de queda livre com um objeto esférico, o movimento do objeto foi filmado utilizando a câmera de um celular e, posteriormente, analisado para produzir o gráfico da Fíg. 1. O experimento foi realizado no laboratório didático.

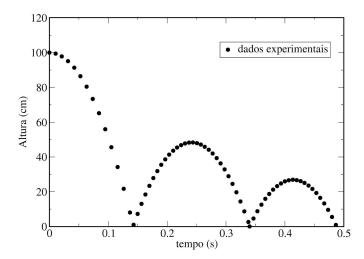


Fig. 1. Gráfico do movimento de um objeto em queda livre.

- a. Estime e interprete os instantes de mínimo que aparecem no gráfico da Fig. 2 (0.5 PONTO)
- b. Estime e interprete os instantes de máximo (0.5 PONTO)
- c. Estime a aceleração da gravidade a partir dos dados do gráfico (0.5 PONTO)
- d. Estime o coeficiente de restituição que caracteriza o objeto e o piso. (1.0 PONTO)