

POR QUE PÓS-GRADUAÇÃO?

- Prosseguir a formação na Pós-graduação é uma necessidade para habilitar um profissional em qualquer área acadêmica de pesquisa. É o caminho natural aqui no IF-UFF!
- É fundamental pensar em pós-graduação desde o início da graduação (vale para alunos do bacharelado e da licenciatura)!

PROGRAMA DE PÓS-GRADUAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA DA UFF

• Linhas de pesquisas

Astrofísica

- Ciência de Superfícies e Filmes Finos
- Espectroscopia Atômica e Molecular
- Física de Sólidos Experimental e Novos Materiais
- Sistemas Nano-estruturados
- Óptica e Informação Quântica
- Óptica Não Linear e Aplicada
- Sistemas Complexos e Física Computacional
- Sistemas Fortemente Correlacionados e supercondutividade
- Física Teórica: Teoria Quântica de Campos, Partículas, Gravitação e Cosmologia
- Física Nuclear Teórica, Experimental e Aplicada (espectroscopia com aceleradores, radioecologia)
- Ensino de Física → Não há grupos específicos, mas há várias iniciativas nessa área

ESTRATÉGIAS PARA ESCOLHA DENTRE ESSAS ÁREAS

- Teoria ou Experimento?
- Aspectos fundamentais ou aplicados da Física?
- Visitas a reuniões dos grupos de pesquisa.
- Participação em colóquios, coloquinhos e outros eventos (ESCOLA DE FÍSICA DA UFF 2018!!!).
- Conversa direta com os professores de áreas de seu potencial interesse.

LaMAR: Laboratório de Microscopia de alta resolução

Microscópios de alta resolução (MEV e MET) para caracterização da estrutura de materiais.

LAC: Laboratório de Radiocarbono

Datação nuclear com técnica de radiocarbono (14C)

(Determinação de idades de materiais de centenas de anos até cerca de 50 mil anos)

Laboratório de preparação de amostra

Laboratório do Acelerador AMS (espectroscopia de massa com aceleradores)

• LAC: Laboratório de Óptica e Informação Quântica

Utilização da luz para codificar e manipular informação em bits quânticos.

O grupo do IF-UFF codifica informação em graus de liberdade associados a feixes de luz, como polarização e caminho óptico.

TELEPORTE: QUADRO PICTÓRICO

• Laboratório de astrofísica:

Deteção de múons em diferentes direções. Alterações no padrão de deteção dos múons podem estar relacionados a fenômenos astrofísicos diversos, como explosões solares, por exemplo.

OPORTUNIDADES DURANTE A GRADUAÇÃO

 Iniciação científica (PIBIC), inovação tecnológica (PIBITI) e a docência (PIBID): pesquisa em grupos vinculados à pós-graduação – inserção em eventos, recursos para atividades acadêmicas, etc. BOLSA: R\$ 400,00

ANÚNCIOS DO IF-UFF: https://www.if.uff.br/pt/gradbolsas

- Programa de altos estudos: aceleração da formação em nível de graduação (com orientação adequada) e interface com a pósgraduação através de disciplinas do mestrado e doutorado em física. Não há bolsa no momento, mas pode voltar a ter...
- Intercâmbios em grupos de pesquisa no exterior: Estágios coordenados junto à Coordenação de Graduação via Editais específicos ou via recursos externos.

INGRESSO NA PÓS-GRADUAÇÃO / BOLSAS DE ESTUDO

- Exame UNIPOSRIO (UFF, UFRJ, UERJ, PUC e CBPF)
- Site: <u>http://uniposrio-fisica.cbpf.br/</u>
- Provas antigas estão disponíveis Conteúdo : FÍSICA BÁSICA E MECÂNICA QUÂNTICA
- CURSOS: Mestrado (2 anos) e Doutorado (4 anos)
- Há ainda a possibilidade de fazer o Doutorado direto (5 anos) Indicado para alunos de alto desempenho, que tenham participado com sucesso de programas de iniciação científica e que estejam convictos da área que desejam seguir na pós-graduação
- BOLSAS: Mestrado R\$ 1.500,00; Doutorado R\$ 2.200,00. Pode-se conseguir complementos de bolsas até R\$ 2.100,00 para mestrado e R\$ 2.800,00 para doutorado através do Programa Nota 10 da FAPERJ.
- Possibilidade de doutorado sanduíche (até 1 ano no exterior ao longo do curso de doutorado).

Bolsa em torno de US\$ 1.300,00 + US\$ 400,00 (para cidades de alto custo)

PROGRAMAS DE PÓS-GRADUAÇÃO (PPGS): AVALIAÇÃO

- PPGs reconhecidos pelo Governo Federal são avaliados a cada quatro anos pela CAPES.
- O PPG em Física da UFF está no Programa de Excelência da CAPES (PROEX), com nota 6 em um máximo de 7.
- A avaliação é baseada na produção do Programa de Pós-graduação. Mas o que é produção?

INDICADORES ACADÊMICOS DE AVALIAÇÃO

- Publicação de docentes e de discentes em revistas internacionais
- Bolsas de produtividade do CNPq (bolsas dos pesquisadores)
- Diversidade de linhas de pesquisas do PPG
- Lideranças acadêmicas (pesquisadores de destaque)
- Qualidade dos laboratórios de pesquisas associados ao PPG
- Atração de investimentos externos (do Brasil e do Exterior)
- Cooperações internacionais
- Estrutura física
- Etc.

PRODUÇÃO ACADÊMICA ANUAL DO PPGF-UFF

ANO	DOCENTES	A1+A2+B1	Artigos/docente	
2013	45	87	1.93	
2014	46	81	1.76	
2015	47	91	1.94	
2016	48	112	2.33	

→ 10 artigos/docente em 5 anos (média no quadriênio).

Produção é dominada por Qualis A2 (Comportamento típico em Programas 6 e 7)

Physics Reports 647 (2016) 1-46

Green's function approach for quantum graphs: An overview

Signatures of the Giant Pairing Vibration in the $^{14}\mathrm{C}$ and $^{15}\mathrm{C}$ atomic nuclei

F. Cappuzzello^{1,2}, D. Carbone², M. Cavallaro², M. Bondi^{1,2}, C. Agodi², F. Azaiez³, A. Bonaccorso⁴, A. Cunsolo²,

COMMUNICATIONS

Received 28 Dec 2014 | Accepted 24 Feb 2015 | Published 27 Mar 2015

ARTICLE

ARTICLE

Received 20 May 2015 | Accepted 21 Aug 2015 | Published 29 Sep 2015

DOI: 10.1038/ncomms9429 **OPEN**

Raman spectroscopy as probe of nanometre-scale strain variations in graphene

C. Neumann^{1,2}, S. Reichardt¹, P. Venezuela³, M. Drögeler¹, L. Banszerus¹, M. Schmitz¹, K. Watanabe⁴, T. Taniguchi⁴, F. Mauri⁵, B. Beschoten¹, S.V. Rotkin^{1,6} & C. Stampfer^{1,2}

		Итриста Игрога 505 (2015) 1-85		
	和國際總統	Contents lists available at ScienceDirect	NI HINKYS BURGHT	
	- 35	Physics Reports	manorea nativi Torres nativi	
	ELSEVIER	journal homepage: www.elsevier.com/locate/physrep	**************************************	
957743. OPEN				

Recent developments in fusion and direct reactions with weakly bound nuclei*

L.F. Canto^{a,b}, P.R.S. Gomes^b, R. Donangelo^{a,c}, J. Lubian^b, M.S. Hussein^{d,e,f,*}

CrossMark

Science Advances

RESEARCH ARTICLE

nature

nature

photonics

photonics

QUANTUM INFORMATION PROCESSING

Experimental scattershot boson sampling

Marco Bentivegna,¹ Nicolò Spagnolo,¹ Chiara Vitelli,^{1,2} Fulvio Flamini,¹ Niko Viggianiello,¹ Ludovico Latmiral,¹ Paolo Mataloni,¹ Daniel J. Brod,³ Ernesto F. Galvão,⁴ Andrea Crespi,^{5,6} Roberta Ramponi,^{5,6} Roberto Osellame,^{5,6} Fabio Sciarrino¹*

2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1400255

Published for SISSA by 🖉 Springer

RECEIVED: December 20, 2012 ACCEPTED: February 6, 2013 PUBLISHED: March 6, 2013

Experimental validation of photonic boson sampling

Nicolò Spagnolo¹, Chiara Vitelli^{1,2}, Marco Bentivegna¹, Daniel J. Brod³, Andrea Crespi^{4,5}, Fulvio Flamini¹, Sandro Giacomini¹, Giorgio Milani¹, Roberta Ramponi^{4,5}, Paolo Mataloni¹, Roberto Osellame^{4,5}*, Ernesto F. Galvão³* and Fabio Sciarrino¹*

Confinement of quarks and valence gluons in ${
m SU}(N)$ Yang-Mills-Higgs models PUBLISHED ONLINE: 26 MAY 2013 | DOI: 10.1038/NPHOTON.2013.112

PUBLISHED ONLINE: 22 JUNE 2014 | DOI: 10.1038/NPHOTON.2014.13

Integrated multimode interferometers with arbitrary designs for photonic boson sampling

Andrea Crespi^{1,2}, Roberto Osellame^{1,2}*, Roberta Ramponi^{1,2}, Daniel J. Brod³, Ernesto F. Galvão³*, Nicolò Spagnolo⁴, Chiara Vitelli^{4,5}, Enrico Maiorino⁴, Paolo Mataloni⁴ and Fabio Sciarrino⁴*

L.E. Oxman

PRL 116, 212301 (2016) PHYSICAL REVIEW LETTERS

week ending 27 MAY 2016

Moving Forward to Constrain the Shear Viscosity of QCD Matter

Gabriel Denicol,¹ Akihiko Monnai,² and Björn Schenke¹

PRL 111, 130503 (2013)PHYSICAL REVIEW LETTERSweek ending
27 SEPTEMBER 2013

General Rules for Bosonic Bunching in Multimode Interferometers

Nicolò Spagnolo,¹ Chiara Vitelli,^{2,1} Linda Sansoni,¹ Enrico Maiorino,¹ Paolo Mataloni,^{1,3} Fabio Sciarrino,^{1,3,*} Daniel J. Brod,⁴ Ernesto F. Galvão,^{4,†} Andrea Crespi,^{5,6} Roberta Ramponi,^{5,6} and Roberto Osellame^{5,6,‡}

 PRL 111, 250401 (2013)
 PHYSICAL
 REVIEW
 LETTERS
 20 DECEMBER 2013

 Observation of Environment-Induced Double Sudden Transitions in Geometric Quantum Correlations

F. M. Paula,¹ I. A. Silva,² J. D. Montealegre,¹ A. M. Souza,³ E. R. deAzevedo,² R. S. Sarthour,³ A. Saguia,¹ I. S. Oliveira,³ D. O. Soares-Pinto,² G. Adesso,⁴ and M. S. Sarandy¹

SCIENTIFIC REPORTS

OPEN The use of the terrestrial snails of the genera *Megalobulimus* and *Thaumastus* as representatives of the atmospheric carbon reservoir

Kita D. Macario¹, Eduardo Q. Alves², Carla Carvalho³, Fabiana M. Oliveira¹, Christopher Bronk Ramsey², David Chivall², Rosa Souza⁴, Luiz Ricardo L. Simone⁵ & Daniel C. Cavallari²

Magnetostatic Interactions in Self-Assembled $Co_x Ni_{1-x} Fe_2 O_4 / BiFeO_3$ Multiferroic Nanocomposites

Shuchi Ojha, Wallace C. Nunes, Nicolas M. Aimon, and Caroline A. Ross*

www.nature.com/scientificreports

www.acsnano.org

2D Materials

LETTER

Strain–displacement relations for strain engineering in single-layer 2d materials

Daniel Midtvedt^{1,3}, Caio H Lewenkopf² and Alexander Croy¹ Published 1 February 2016 • © 2016 IOP Publishing Ltd 2D Materials, Volume 3, Number 1

SCIENTIFIC REPORTS

OPEN Superadiabatic Controlled Evolutions and Universal Quantum Computation

Received: 16 July 2015 Accepted: 05 October 2015 Published: 29 October 2015

Alan C. Santos¹ & Marcelo S. Sarandy^{1,2}

CORPO DISCENTE E ORIENTAÇÕES - 2016

• Corpo discente em 31/12/2016:

	Número de Alunos
Mestrado	23
Doutorado	46
Total	69

• Distribuição de nacionalidades:

País	Mestrado	Doutorad o	Total
Brasil	21	37	58
Peru	1	2	4
Venezuela	1	3	4
Colômbia		3	2
Itália		1	1

• Distribuição de gêneros:

5 mestrandas (22% do total de mestrandos) e 11 doutorandas (24% do total de doutorandos).

PRODUÇÃO DISCENTE

Crescente no período 2013-2016!

Ano		Discentes como Autores	
	2013		26
	2014		36
	2015		39
	2016		43

EDIÇÃO ANTERIOR: ESCOLA DE FÍSICA 2017

MENSAGENS FINAIS

- O PPG-Física está a disposição para auxiliar no encaminhamento estudantes de graduação para iniciação científica.
- Estejam atentos a atividades relacionadas à pós-graduação: Escola de Física da UFF, Colóquios, seminários dos grupos, etc.

• Contato da Pós-graduação em Física da UFF: <u>cpg@if.uff.br</u>, www.if.uff.br/pt/posgraduacao

OBRIGADO!