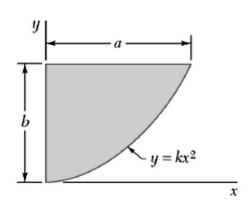
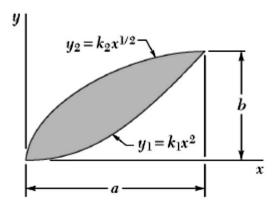
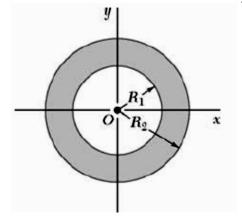
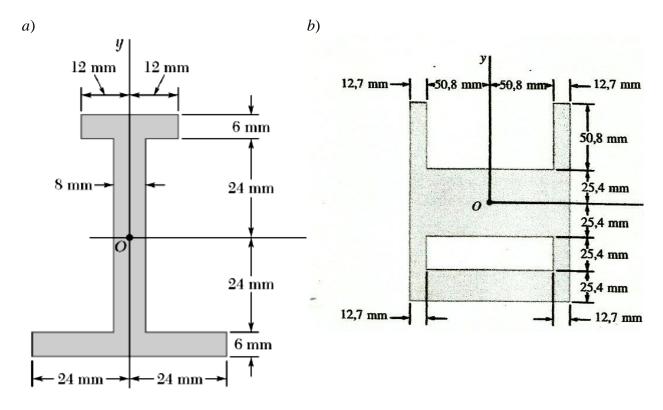

MOMENTOS DE INÉRCIA DE ÁREA

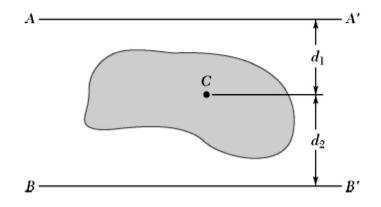

EXERCÍCIOS

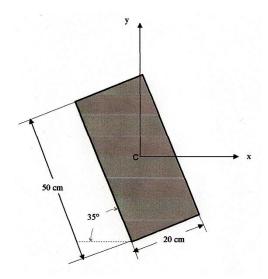
1. Determine por integração direta, para a superfície sombreada mostrada na figura, os momentos de inércia I_x e I_y .

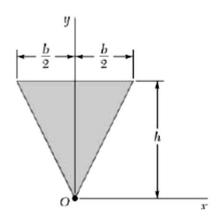

a)


b)

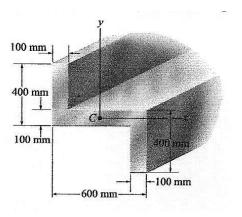

2. Determine os momentos de inércia e os raios de giração da superfície sombreada representada na figura, relativamente aos eixos *x* e *y*.

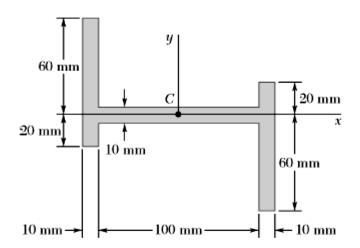

- 3. a) Determine o momento polar de inércia da coroa circular relativamente ao ponto O.
 - b) Determine os momentos de inércia relativamente aos eixos x e y.


4. Determine os momentos de inércia e raios de giração da superfície sombreada, relativamente aos eixos *x* e *y*.


5. Para a superfície sombreada representada na figura com 4000 m² de área, determine a distância d_2 e o momento de inércia relativamente a um eixo baricêntrico paralelo a AA', sabendo que os momentos de inércia relativamente a AA' e BB' são, respectivamente, 12×10^6 mm⁴ e 23.9×10^6 mm⁴, e que $d_1=25$ mm.

6. Para a seção retangular mostrada na figura, determine os momentos de inércia e o produto de inércia em relação aos eixos baricêntricos *x* e *y*.


7. Determine o momento polar de inércia da superfície representada relativamente ao ponto O.


- 8. Para a superfície sombreada mostrada, determine:
 - a) o momento de inércia em relação ao eixo centroidal vertical;
 - b) o respectivo raio de giração;
 - c) o produto de inércia em relação aos eixos centroidais horizontal e vertical.

2 ^{cm}	8 ^{cm}	→ 2 ^{cm}	
			2 ^{cm}
	And the state of t		4 ^{cm}
-			2 ^{cm}

- 9. Para a área da seção transversal da viga mostrada na figura, pede-se:
 - a) determine os momentos de inércia e produto de inércia em relação aos eixos centroidais x e y;
 - b) determine a direção dos eixos centroidais principais de inércia e os respectivos momentos principais de inércia;
 - c) esboce o correspondente círculo de Mohr, indicando os resultados encontrados nos itens a e b.

10. Determine o produto de inércia da superfície representada relativamente aos eixos baricêntricos *x* e *y*.

Respostas:

1. a)
$$I_x = \frac{bh^3}{4}$$
; $I_y = \frac{b^3h}{12}$; b) $I_x = \frac{2ab^3}{7}$; $I_y = \frac{2a^3b}{15}$

2. a)
$$I_x = \frac{3ab^3}{35}$$
; $k_x = b\sqrt{\frac{9}{35}}$; b) $I_y = \frac{3a^3b}{35}$; $k_y = a\sqrt{\frac{9}{35}}$

3. a)
$$J_0 = \frac{\pi}{2} [R_2^4 - R_1^4]$$
; b) $I_x = I_y = \frac{\pi}{4} [R_2^4 - R_1^4]$

4. *a*)
$$I_x = 390 \times 10^3 \text{ mm}^4$$
, $k_x = 21.9 \text{ mm}$; $I_y = 64.3 \times 10^3 \text{ mm}^4$, $k_y = 8.87 \text{ mm}$
b) $I_x = 1.915 \times 10^7 \text{ mm}^4$; $k_x = 40.6 \text{ mm}$; $I_y = 1.935 \times 10^7 \text{ mm}^4$, $k_y = 40.8 \text{ mm}$

5.
$$d_2 = 60.0 \text{ mm}$$
; $\bar{I} = 9.50 \times 10^6 \text{ mm}^4$

6.
$$I_x = 90.91 \times 10^3 \text{ cm}^4$$
; $I_y = 150.76 \times 10^3 \text{ cm}^4$; $P_{xy} = -82.22 \times 10^3 \text{ cm}^4$

7.
$$J_O = \frac{bh}{48} (12h^2 + b^2)$$

9. (a)
$$I_x = 2.90 \times 10^9 \, mm^4$$
; $I_y = 5.60 \times 10^9 \, mm^4$; $P_{xy} = -3.00 \times 10^9 \, mm^4$

(b)
$$\theta_p = -32.9^\circ$$
; $I_{m\acute{a}x} = 7.54 \times 10^9 \, mm^4$; $I_{m\acute{i}n} = 0.96 \times 10^9 \, mm^4$

10.
$$\overline{P}_{xy} = -1,760 \times 10^6 \, mm^4$$